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Coverage-guided greybox fuzzers rely on control-flow coverage feedback to explore a target program and
uncover bugs. Compared to control-flow coverage, data-flow coverage offers a more fine-grained approximation
of program behavior. Data-flow coverage captures behaviors not visible as control flow and should intuitively
discover more (or different) bugs. Despite this advantage, fuzzers guided by data-flow coverage have received
relatively little attention, appearing mainly in combination with heavyweight program analyses (e.g., taint
analysis, symbolic execution). Unfortunately, these more accurate analyses incur a high run-time penalty,
impeding fuzzer throughput. Lightweight data-flow alternatives to control-flow fuzzing remain unexplored.

We present DATAFLow, a greybox fuzzer guided by lightweight data-flow profiling. We also establish a
framework for reasoning about data-flow coverage, allowing the computational cost of exploration to be
balanced with precision. Using this framework, we extensively evaluate DATAFLow across different precisions,
comparing it against state-of-the-art fuzzers guided by control flow, taint analysis, and data flow.

Our results suggest that the ubiquity of control-flow-guided fuzzers is well-founded. The high run-time
costs of data-flow-guided fuzzing (~10% higher than control-flow-guided fuzzing) significantly reduces fuzzer
iteration rates, adversely affecting bug discovery and coverage expansion. Despite this, DATAFLow uncovered
bugs that state-of-the-art control-flow-guided fuzzers (notably, AFL++) failed to find. This was because data-
flow coverage revealed states in the target not visible under control-flow coverage. Thus, we encourage the
community to continue exploring lightweight data-flow profiling; specifically, to lower run-time costs and to
combine this profiling with control-flow coverage to maximize bug-finding potential.

CCS Concepts: « Software and its engineering — Software testing and debugging; Software maintenance
tools; Empirical software validation.

Additional Key Words and Phrases: fuzzing, data flow, coverage

ACM Reference Format:
Adrian Herrera, Mathias Payer, and Antony L. Hosking. 2023. DATAFLow: Toward a Data-Flow-Guided Fuzzer.
ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2023), 31 pages. https://doi.org/10.1145/3587156

1 INTRODUCTION

Fuzzers are an indispensable item in the software-testing toolbox. The idea of fuzzing—to test a
target program by subjecting it to a large number of inputs—can be traced back to an assignment
in a graduate Advanced Operating Systems class [49]. These fuzzers were relatively primitive
(compared to a modern fuzzer): they simply fed a randomly-generated input to the target, failing the
test if the target crashed or hung. They did not model program or input structure, and only observed
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the input/output behavior of the target. In contrast, modern fuzzers use sophisticated program
analysis to model program and input structure, and continuously gather dynamic information
about the target.

Exploiting this dynamic information drives fuzzer efficiency. For example, coverage-guided
greybox fuzzers—perhaps the most widely-used class of fuzzer—track code paths executed by the
target.! This allows the fuzzer to focus its mutations on inputs that reach new code. Intuitively, a
fuzzer can only find bugs in code it executes, so maximizing the amount of code covered should
implicitly maximize the number of bugs found. Code coverage also approximates program behavior:
expanding code coverage implies exploring new or different program behaviors.

Coverage-guided greybox fuzzers are now pervasive. Their success [56] is attributable to one
greybox fuzzer in particular: American Fuzzy Lop (AFL) [73]. AFL uses lightweight instrumentation
to track edges covered in the target’s control-flow graph (CFG). A large body of research has built
on AFL [3, 7, 8, 16, 21, 24, 33, 43, 70], and while improvements have been made, most fuzzers still
default to edge coverage as an approximation of program behavior. Is this the best we can do?

In some targets, control flow offers only a coarse-grained approximation of program behavior.
This includes targets whose control structure is decoupled from its semantics (e.g., LR parsers
generated by yacc) [71]. Such targets require data-flow coverage [11, 22, 27, 34, 55, 62, 71] to
accurately capture program behavior. Whereas control flow focuses on the order of operations in a
program (i.e., branch and loop structures), data flow instead focuses on how variables (i.e., data)
are defined and used [55]; indeed, there may be no control dependence between definition and use
sites (see Section 3 for details).

In fuzzing, data flow typically takes the form of dynamic taint analysis (DTA), in which the
target’s input data is tainted at its definition site and tracked as it is accessed and used at run time.
Unfortunately, accurate DTA is difficult to achieve and expensive to compute (e.g., prior work has
found DTA is expensive [23, 60] and its accuracy highly variable across implementations [15, 60]).
Moreover, several real-world programs fail to compile under DTA, increasing deployability concerns.
Thus, most widely-deployed greybox fuzzers (e.g., AFL [73], libFuzzer [42], and honggfuzz [65])
eschew DTA in favor of higher execution rates.

While lightweight alternatives to DTA exist (e.g., REDQUEEN [5], GREYONE [23]), the full potential
of control- vs. data-flow fuzzer coverage metrics remains to be thoroughly explored. To support
this exploration, we present DATAFLow, a greybox fuzzer that tracks a program’s data flow (rather
than control flow) without requiring DTA. Notably, our work performs data-flow analysis inline
with the execution, directly guiding the fuzzer. This is in contrast to prior work (e.g., GREYONE),
which performed post hoc trace analysis in an attempt to infer or approximate data flow. Unlike
DTA, which strives for accuracy, we take inspiration from popular greybox fuzzers (e.g., AFL) and
embrace some imprecision to reduce overhead and thus maximize fuzzing throughput.

We perform a large-scale evaluation (> 3 CPU-yr) of DATAFLow’s effectiveness, comparing it
against three state-of-the-art fuzzers. Our evaluation on the Magma benchmark [26] shows that,
while generally outperformed by control-flow-guided fuzzers, baATAFLow uncovers bugs that these
fuzzers fail to find. This is because data-flow coverage revealed states in the target not visible
in the CFG. Curiously, this is despite the control-flow-guided fuzzers achieving more control-
and data-flow coverage (on targets previously identified as being amenable to data-flow-guided
fuzzing [47]). We determined the run-time costs of data flow tracking to be the root cause of this
result; intuitively, the cost of data-flow-guided fuzzing is not recoverable in targets where data flow

IThe original fuzzer of Miller et al. [49] is now known as a blackbox fuzzer (because it has no knowledge of the target’s
internals).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.



DATAFLow: Toward a Data-Flow-Guided Fuzzer 1:3

mostly follows control flow. We encourage the community to continue exploring data-flow-guided
fuzzing to maximize bug discovery.

Summary of Contributions
We contribute the following, making our work available at https://github.com/HexHive/datAFLow:
(1) A framework for reasoning about and constructing data-flow coverage metrics for greybox
fuzzing (Section 4).
(2) A new data-flow-guided fuzzer, pATAFLow, to explore data flow in a target program with
low overhead (Section 5).
(3) An extensive evaluation and comparison of representative fuzzers guided by control flow,
taint analysis, and data flow (Section 6).

2 BACKGROUND & RELATED WORK

2.1 Fuzzing
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Fig. 1. High-level overview of a typical greybox fuzzer.

Fuzzing is a dynamic analysis for finding bugs in a target program by subjecting it to random
inputs. Coverage-guided greybox fuzzers—the most popular class of fuzzer—do not just blindly
feed these random inputs into the target. Instead, they use a feedback loop based on a coverage
metric. This feedback loop guides the fuzzer toward generating inputs that explore new behaviors
of the target (as determined by the coverage metric).

Fig. 1 illustrates the architecture of a typical coverage-guided greybox fuzzer. The user provides
(a) an instrumented program called the fuzzing target, and (b) an optional set of starting inputs
called seeds (an empty seed is used if not provided [29]).

The fuzzer places the seeds into a queue and then: (i) selects a seed from the queue; (ii) mutates
the seed (via bit-flipping, value substitution, etc.); (iii) executes the target with the mutated seed,
storing coverage (or an approximation thereof) in a coverage map; and (iv) detects crashes and
newly-discovered coverage in the target (saving the former for offline analysis and discarding the
seed, or in the latter returning the seed into the queue for further exploration by mutation). This
process repeats until the residual risk of a missed bug falls beneath a suitable threshold [6].

2.2 Data-flow Analysis

Data-flow analysis typically refers to a collection of techniques for reasoning about the run-time
flow of values in a program. These techniques can be static—such as those used by compilers for
liveness analysis, constant propagation, and reaching definition analysis—or dynamic. Dynamic
data-flow analysis is an approach adopted in software testing for reasoning about the sequence
of actions performed on data (i.e., program variables) at run time [13, 31, 32]. These actions are
typically analyzed in terms of the interactions between a variable’s definition—or def site—and
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Table 1. Survey of related fuzzers. CS = context sensitive. [JoN requires manual analysis to identify variables
to track. CONFETTI uses exact and approximate DTA to provide both global and local hints, respectively.

Angora  GREYONE CONFETTI IjoN InvsCov DDFuzz GraphFuzz DATAFLow
Feedback CS edge Edge Edge Edge + value Edge + value Edge + DDG Edge def-use
Manual analysis X X X v X X X v
“Exact” DTA 4 X v X X X X X
“Appx.” DTA X 4 v X X X X X

how that variable is used at one or more use sites [55, 62]. Data flows between these definition and
usage sites are known as def-use chains.

Empirical studies have shown the effectiveness of data-flow coverage metrics over control-flow
metrics when developing software tests [22, 27, 34, 55, 62] and comparing program executions [64].
However, to the best of our knowledge, these data-flow techniques have not yet been explored by
the fuzzing community.

2.3 Related Work

Fuzzing is an active area of research. Consequently, we focus on recent work related to coverage
metrics for fuzzing. We summarize the fuzzers discussed below in Table 1, comparing them to our
DATAFLow fuzzer (described further in Sections 4 and 5).

The most popular fuzzers are those guided by code coverage [44]. Typically, this code coverage
is based on a target’s control-flow graph (CFG) and is measured at either basic block or edge
granularities. While edge coverage is typically considered more sensitive than basic-block coverage,
as we shall see in Section 3, it is not without its issues. Indeed, TortoiseFuzz showed that basic-block
coverage is effective when paired with other coverage metrics that increase sensitivity (e.g., function
call and loop coverage) [70].

To improve mutation precision, some fuzzers use dynamic taint analysis (DTA) to track input
bytes. The fuzzer uses this information to infer which bytes to mutate. Unfortunately, DTA suffers
from accuracy and performance issues [15, 36, 60], limiting deployment. To overcome performance
issues, Angora [12] amortizes DTA cost by limiting its application to once per input (over many
mutations) [12]. Other fuzzers avoid DTA in favor of approximate taint tracking; e.g., REDQUEEN [5]
uses input-to-state correspondence, based on the idea that “parts of the input directly correspond to
the memory or registers at run time”. Similarly, GREYONE [23] infers taint by monitoring the value
of variables as input bytes are mutated, while CONFETTI [39] uses concolic execution to overcome
missing data-flow relationships and implicit flows (see Section 3).

Alternatives to code coverage metrics are also being explored. MEMFuzz [16] and AFL-Sensitive [69]
augment edge coverage with memory access information. In theory, this approach allows the fuzzer
to distinguish between executions that cannot be distinguished by control flow alone. In practice,
this approach leads to saturation of the fuzzer’s coverage map.

To give more say to the human analyst (e.g., to prevent coverage map saturation), Ijon [4]
introduced an annotation mechanism for tracking key state variables in the coverage map (e.g.,
Mario’s x and y coordinates in the game Super Mario Bros.). This approach overcame fuzzer
roadblocks that automated approaches could not.

InvsCov [20] augments code coverage with the value of and relationships between key program
variables. These variables are based on likely invariants (i.e., invariants that hold for a set of dynamic
traces but may not hold for all inputs); the violation of a likely invariant indicates “interesting”
program behavior (and is recorded in the coverage map).
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1 size_t max;

2unsigned int 1 = @, j = 0;

3 char *prime = malloc(max);

4 memset(prime, 1, sizeof(char) x max);

6 for (i = 2; i < max; ++i) {

7 if (prime[il]) {

8 for (j = 1i; 1 * j < max; ++3j) {
9 primel[i * j]l = 0;

10 }

11 }

12 3}

Fig. 2. Motivating example. The Sieve of Eratosthenes for finding all prime numbers up to max value.

DDFuzz [47] also augments code coverage with data flows between program variables. Here,
data flows are derived from the target’s data dependency graph (DDG). DDGs describe the data
flows between instructions in a program and are traditionally used by optimizing compilers [19].
Like InvsCov, DDFuzz only considers a subset of program variables (to prevent state explosion
and coverage-map saturation): variable def sites are restricted to load and alloca instructions in
the LLVM intermediate representation (IR), while variable uses are restricted to store and call
instructions. Further filtering is applied to discard data flows subsumed by edge coverage.

GraphFuzz [25] fuzzes library APIs by modeling sequences of executed functions as a data flow
graph. Using a data flow graph and control-flow-based coverage feedback, GraphFuzz generates
fuzzing harnesses that explore a greater range of API combinations.

Despite the body of work on fuzzer coverage metrics, pure data flow coverage remains an under-
explored metric. This is likely due to the perceived run-time cost of measuring data flow [20, 69].
Nevertheless, we hypothesize lightweight data-flow tracking is possible. To this end, we introduce
DATAFLow, a data-flow-guided greybox fuzzer with a tunable sensitivity range.

3 MOTIVATING DATA-FLOW COVERAGE

A fuzzer’s coverage metric should accurately capture/approximate program behavior with
minimal run-time overheads. Here we discuss why control-flow-based metrics are insufficient to
accurately capture program behavior, using Fig. 2 as a running example.

While basic block and edge coverage (the most pervasive coverage metrics in greybox fuzzers)
are performant, they often provide a poor approximation of program behavior. This is because
code coverage ultimately represents a static view of the target, whereas data-flow coverage more
closely captures the target’s run-time computations; i.e., how input is consumed by the target.

Fuzzers using basic-block coverage cannot differentiate between different orderings of the same
blocks. This can be improved by using edge coverage, which allows the fuzzer to differentiate
between a loop’s forward and backward edges (such as the loops at Lines 6 and 8 in Fig. 2).

Unfortunately, edge coverage still loses important information about program behavior (e.g.,
greybox fuzzers rely on coverage information to decide which input mutations lead to new program
behaviors). However, uncovering new behaviors can be highly inefficient because a fuzzer guided
by code coverage alone cannot identify which mutated input bytes led to new program behavior.

Some fuzzers address this issue (i.e., determining which input bytes to mutate) by applying
dynamic taint analysis (DTA). DTA improves mutation accuracy by tracking the subset of program
values used as arguments to comparison operations. However, the effectiveness of DTA depends
on its taint policy, which specifies the taint relationship between an instruction’s input and output.
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In Fig. 2, max is user-controlled (i.e., the user selects the maximum prime number) and is therefore
the taint source. While max is read directly on Lines 3, 4, 6 and 8, it is prime accesses that most
accurately captures the program behavior. From a bug-finding perspective, prime accesses are also
the most likely source of memory-safety vulnerabilities.

Given max determines the size of prime (via malloc, Line 3), taint may propagate to prime.
However, this is an implicit flow that the taint policy may not capture. For example, compiler-based
DTA—e.g., LLVM’s DataFlowSanitizer (DFSAN) [66]—cannot track taint outside uninstrumented
code (e.g., through functions provided by external libraries, such as malloc). Ensuring taint is
accurately tracked in uninstrumented code requires significant manual effort. Moreover, prior work
has shown this accuracy to be highly variable and dependent on the DTA implementation (e.g.,
due to incorrect taint policies and unsupported instructions) [15].

DTA is also expensive. She et al. [60] found none of their targets completed within a 24 h period
when run with the Triton DTA tool. We also found that Angora’s compiler-based DTA (built on
DFSAN) exhibited a run-time overhead of 32.79X over the same uninstrumented code from the
SPEC CPU2006 benchmark suite (see Section 6.2). This is notable because prior work has found
DFSAN to be one of the more performant DTA frameworks (due to compile time—rather than run
time—instrumentation) [60].

Given the disadvantages of DTA (low accuracy and high cost), we propose an alternative approach:
tracking data flows between prime’s def (Line 3) and use sites (Lines 7 and 9). The following section
describes our data-flow tracking approach.

4 DESIGN

A greybox fuzzer should maintain accurate coverage information without negatively impacting
performance. These requirements exist irrespective of the coverage metric used. With this in mind,
we describe: (i) a theoretical foundation for constructing data-flow-based coverage metrics; (ii) how
DATAFLoOW incorporates these observations; and (iii) the implementation of a DATAFLoW prototype.

4.1 Coverage Sensitivity

Based on Section 2.2, we define data-flow coverage as follows:
Data-flow coverage is the tracking of def-use chains executed at run time.

This definition allows us to explore data-flow-based coverage metrics with different sensitivities [57,
69]. We follow the program analysis literature and define sensitivity as a coverage metric’s ability to
discriminate between a set of program behaviors [37]. In fuzzing, a coverage metric’s sensitivity is
its ability to preserve a chain of mutated test cases until they trigger a bug [69]. Different sensitivities
allow us to balance efficacy and performance: more sensitive metrics incur higher performance
penalties (e.g., edge coverage sensitivity is increased by incorporating function call context [12].
However, this requires additional instrumentation, increasing run-time overhead [57]).

Like traditional data-flow analysis (Section 2.2), our data-flow coverage metric requires identifying
variable def and use sites. Following Horgan and London [31], we define a data-flow variable
def site as a name referring to storage allocated statically (e.g., storage class static, global) or
automatically (i.e., local to a procedure). We deviate from this definition by: (i) including calls to
dynamic memory allocation routines (e.g., malloc); and (ii) excluding reallocations/reassignments
that would traditionally kill a definition. Instead, defs are only killed when they (a) go out of
scope (e.g., a local variable in a returning procedure), or (b) are explicitly deallocated (e.g., via
free). Consequently, a use site includes both reads/writes from/to a def site. We deviate from the
classic definition to ensure scalability: the difficulties of scaling data-flow analyses on real-world
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programs are well known [11, 27, 62]. We believe reducing precision by not killing definitions
(when assigning a new value to a variable) is a suitable trade-off to maintain scalability.

Once we identify def and use sites, DATAFLow instruments these sites (using compiler-based
instrumentation, discussed in Section 5) so def-use chains can be tracked at run time. However,
exactly which def-use sites are instrumented (and hence which are tracked) depends on the required
sensitivity. Inspired by Wang et al. [69], this leads us to define a pair of sensitivity lattices—one for
def sites and another for use sites, in Fig. 3—that can be composed to achieve the desired overall
sensitivity (we discuss related threats to validity in Section 5.4).

read write

\\ read + write + ! .
1 access
“. offset offset |
int arrays el 1
. |
. ;
. |
\ \ / / R A — 4 ‘ |
. 8 ravs N 9 read + write + 1 ~_ access+ :
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(a) Def site sensitivity lattice. Variables are partitioned (b) Use site sensitivity lattice. Variables are parti-
based on their type. tioned based on their access (e.g., read, write) and

what information about the access is recorded
(e.g., offset, value).

Fig. 3. Def and use site sensitivity lattices. The sensitivity of coverage metrics increases toward the bottom.

4.1.1 Def Site Sensitivity. Complete data-flow coverage requires identifying and instrumenting all
variable def sites. Unfortunately, the overhead to achieve this level of sensitivity is prohibitively
expensive [10]. Therefore, a method for identifying (and hence instrumenting) a subset of important
program variables is required. Ideally, this would be an (almost entirely) automated process, reducing
the developer burden on the user.

One approach is to partition def sites by type and restrict instrumentation to def sites of a given
type (or type set). Figure 3a shows the sensitivity lattice for this type-based partitioning.

Partitioning def sites by type has several advantages. For example, instrumenting array variables
focuses the fuzzer on memory-safety vulnerabilities. Similarly, tracking the data flow of structs may
allow for the discovery of type confusion vulnerabilities [35, 61]. Type-based partitioning requires
some upfront knowledge of the target to ensure meaningful variables are tracked at run time. For
example, the fuzzer may miss important program behaviors (and hence bugs) if “uninteresting”
variables are tracked (e.g., max in Fig. 2).

Tracking all data flows is prohibitively expensive. Identification (and instrumentation) of only
important variables is required.
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4.1.2  Use Site Sensitivity. Figure 3b shows the use site sensitivity lattice. Variables are either read
from or written to (i.e., “accessed”). Variable accesses are strictly more sensitive than just writes or
reads on their own. The simplest and least sensitive metrics only track when a variable is accessed
(shown at the top of the lattice).

Conversely, the most sensitive data-flow coverage metrics are ones that track not only when a
particular variable is accessed, but the value of that variable when accessed. For example, considering
Line 9 in Fig. 6, this is the difference between writing to prime and assigning it the value 0. The
latter is akin to traditional data-flow testing, which focuses on the values that variables take at run
time [55, 62], and is similar to GREYONE, which monitors (a subset of) program variables and their
values to infer taint [23]. Depending on the def site sensitivity, this approach will quickly saturate
the fuzzer’s coverage map (due to the path collision problem [24]); a middle ground between this
overly sensitive approach and simple accesses is required.

We achieve this middle ground by incorporating more fine-grained spatial information into a
variable’s use. This is particularly useful when def sites include arrays and/or structs (e.g., Line 9 in
Fig. 2), as def-use chains are now differentiated by the offset at which an array/struct is accessed
(analogous to a field-sensitive static analysis).

Information at different granularity is recorded at use sites. Care is required when recording
more precise information to ensure the coverage map does not saturate, clogging the fuzzing
queue.

4.1.3 Composing Sensitivity Lattices. Different def-use sensitivities can be composed to track data
flow at different granularities. We reuse the code in Fig. 2 to illustrate this. Given the def sensitivity
lattice in Fig. 3a, either: (i) all three variables (prime, i, and j); (ii) the indices i and j; or (iii) only
the prime array are instrumented (and hence tracked). Here we restrict def site instrumentation
to array variables. Consequently, only prime is tracked. This leads to varying def-use chains
depending on the use site sensitivity.

Simple access. The yellow region in Fig. 3b. Tracks when prime is accessed (Lines 7 and 9 in
Fig. 2). This results in two def-use chains: Line 3 ~» Line 7 and Line 3 ~» Line 9. This is equivalent
to basic block coverage (per Section 2.1): to reach the use at Line 9 requires the execution of all basic
blocks in the CFG. Like block coverage, this provides a poor approximation of program behavior
(as information about the loop and how it affects data is lost).

Access with offset. The red region in Fig. 3b. Tracks when prime is accessed along with the
offsets where prime is accessed (indices i and j). This provides a more complete view of how
prime is used with negligible overhead. This is similar to MEMFuzz’s approach, which incorporates
memory accesses into code coverage [16]. This results in 2 X (max — 2) def-use chains: one for every
read/write at each index where prime is read from/written to.

Access with value. The blue region in Fig. 3b. Tracks when prime is accessed along with the
values (being read/written) during these accesses. This is the most sensitive use site coverage metric
and achieves the goal of traditional data-flow coverage: associate values with variables, and how
these associations can affect the execution of the target [55]. This is similar to GREYONE’s “taint
inference”, which looks at the value of variables used in path constraints [23].

Again, this level of sensitivity results in 2 X (max — 2) def-use chains. Here, prime’s value range
is fully deterministic. However, these values will typically depend on user input, resulting in rapid
saturation of the fuzzer’s coverage map.
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Sensitivity lattice composition must balance efficacy and performance: too precise, and the
fuzzer’s coverage map will saturate, reducing throughput.

By composing def and use sensitivity lattices, we realize a variety of data-flow-based coverage
metrics. We do this in our fuzzer, DATAFLow, described in the following sections.

5 IMPLEMENTATION

Instrumented
Instrument | Instrument target

—>

defsites use sites

=86
Target m

Greybox

fuzzer

source

Target
fuzzalloc objects

Fig. 4. High-level overview of bATAFLow.

Figure 4 depicts DATAFLow’s high-level architecture, including: (i) compiler instrumentation
(built on LLVM v12) for capturing def -use sites at the desired sensitivity (Sections 5.1 and 5.2); and
(ii) a run-time library for feeding data-flow information to the fuzzing engine (Section 5.3).

Our architecture is agnostic to the underlying fuzzer; the instrumented target produced by the
compiler (and linked with the fuzzalloc run-time library) can be executed by any AFL-based fuzzer
(i.e., any fuzzer using an AFL-style coverage map). However, instead of recording and tracking
control-flow coverage, the fuzzer’s coverage map tracks data-flow coverage.

5.1 Def-Use Site Identification

We must first identify def and use sites so that data flows between these sites can be tracked.
Per Section 4.1, def site selection impacts coverage sensitivity: more instrumented def sites leads
to more complete data-flow coverage. We implement several def site instrumentation schemes
based on the type-based partitioning described in Section 4.1.1.

We make the following assumptions during def-use site identification. First, we assume debug
metadata is available in the LLVM IR. We use this metadata to identify and limit variable def sites to
source-level variables. Second, we assume tracked variables are accessed via memory references (i.e.,
load/store instructions), rather than registers. This is automatic for most composite types (e.g.,
arrays). For primitive types (e.g., integers), this requires demoting registers to memory references
(via LLVM’s reg2mem pass).

The first assumption reduces the number of potential data flows and is adopted from prior
work [20, 47]. The second assumption limits use sites to memory access instructions, simplifying
instrumentation. We apply existing LLVM transforms to limit use sites to two instructions: loads
and stores.” Exactly which instructions we instrument depends on the use sensitivity required
(configured at compile time). We describe our instrumentation in Section 5.2.

5.2 Def-Use Tracking

We reduce the run-time tracking of def-use chains to a metadata management problem. Here,
def site identifiers are the metadata requiring efficient retrieval at use sites. Inspired by AFL’s

2We lower atomic memory intrinsics and expand 11vm.memx intrinsics so we can focus on load/store instructions (both of
which are trivial to identify and hence instrument).
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Power-of-two alignment —>

Object

size

Padding

16-bits { Tag

Fig. 5. PAMD’s approach for inline metadata. “Object” is aligned to a power-of-two boundary and “padding”
is inserted to ensure size is a power-of-two.

approach for tracking edge coverage—where basic blocks (in the LLVM IR) are statically assigned a
random 16-bit integer—we statically “tag” def sites (again, in the LLVM IR) with a random 16-bit
integer (Section 5.2.1). This tag is then propagated to use sites, where it is retrieved and used to
construct a def-use chain (Section 5.3).

5.2.1 Def Site Instrumentation. We adopt Padding Area MetaData (PAMD) [41] for tracking def-use
chains. PAMD extends baggy bounds checking, a technique proposed by Ding et al. [17] for protect-
ing C and C++ code against buffer overruns. PAMD attaches inline metadata to memory objects
(hence our assumption that tracked variables are accessed via memory references; Section 5.1) and
provides constant-time lookup of this metadata. This lookup occurs via the “baggy bounds table”,
which stores the binary logarithm of an object’s size and alignment (denoted e). Once e is retrieved
from the baggy bounds table, the base and size of an object pointed to by p is computed using:

base=p & ~(2° - 1) (1)
size = 2° ()

Equations (1) and (2) require an object’s size and alignment to be a power-of-two. To meet this
requirement, PAMD pads static objects (i.e., stack and global variables) before attaching the def
site tag. Figure 5 illustrates this process. For example, given a 4-byte object, then size = 8,e = 3
(the binary logarithm of size), and two bytes of padding is inserted before the tag.

Objects whose padding or overall size becomes too large for static allocation are “heapified”
(i.e., move to the heap). We adopt CCured’s [51] approach to heapify objects. For heap-allocated
objects (including heapified objects), calls tomalloc, calloc, and realloc are replaced with tagged
versions (e.g., __bb_malloc) accepting the 16-bit tag as an additional argument. Figures 6 and 7
demonstrate our def-use instrumentation.

Figure 6 shows the (un)instrumented LLVM IR for the Sieve of Eratosthenes (Fig. 2). We focus our
def site instrumentation on the dynamically-allocated prime array (Line 2 in Fig. 6a). DATAFLow
tags this def site with the identifier 1337 (Line 2 in Fig. 6b). This tagging occurs by replacing
malloc with __bb_malloc, which also registers the allocation in the baggy bounds table.

In comparison, Fig. 7 demonstrates the instrumentation of a stack def site. The original code
(Fig. 7a) statically allocates an 8-byte buffer buf, filling it via a call to read. The buffer’s second
element is later accessed. During compilation, DATAFLow resizes buf to meet PAMD’s object size
requirement. Here, six bytes of padding is inserted before the two-byte tag (Line 2 in Fig. 7b). This
def site is tagged with the identifier 1102 (Line 4) and registered in the baggy bounds table (Line 8).

5.2.2  Use Site Instrumentation. Per Section 5.1, use sites are limited to load and store instructions
in the LLVM IR (e.g., Line 7 in Fig. 6a and Line 10 in Fig. 7a). We instrument these instructions with
a call to __hash_def_use, which retrieves the object’s size from the baggy bounds table and uses

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.



DATAFLow: Toward a Data-Flow-Guided Fuzzer 1:11

%prime = call i8% @malloc(i64 %max)

IS IO IO RN

%idx = mul 132 %i, i32 %j
6 %prime_idx = getelementptr inbounds 18, i8x %prime, 164 %idx
7 store i8 @, %prime_idx

(a) Original code.

%prime = call i8x @__bb_malloc(il16 1337, i64 %max)

%idx = mul 132 %i, i32 %j

6 %prime_idx = getelementptr inbounds i8, i8* %prime, i64 %idx
7 call @__hash_def_use(i16 4242, i8* %prime_idx, i64 1)

§ store i8 @, %idx

(b) Instrumented code.

Fig. 6. The Sieve of Eratosthenes. The array prime is dynamically allocated. DATAFLow replaces this allocation
with a call to __bb_malloc and registers this allocation in the baggy bounds table. The use site is instrumented
with a call to __hash_def_use.

this size to retrieve the def tag. The size is also used to determine the offset at which an object
is accessed (enabling the access with offset sensitivity described in Section 4.1.3). Like def sites,
use sites are tagged at compile time with a randomly-generated identifier (e.g., 4242 at Line 7 in
Fig. 6b and 1234 at Line 17 in Fig. 7b). Finally, we leverage several techniques from AddressSanitizer
(ASAN) [59] to limit the number of use instrumentation sites, thereby reducing overhead without
sacrificing precision. We describe the internals of __hash_def_use, and how it integrates with the
fuzzer, in the following section.

5.3 Fuzzer Integration

The __hash_def_use function constructs a def-use chain by hashing together the def and use
sites. This hash is used as a lookup into the fuzzer’s coverage map to guide the fuzzer toward
discovering new data flows. This is analogous to AFL tracing edges to discover new control flow
paths. Consequently, we leverage techniques used by traditional greybox fuzzers (e.g., compact
bitmaps) to efficiently record data-flow coverage [44].

In particular, we use coarse data-flow coverage metrics—def-use chain hit counts stored in a
compact bitmap—to achieve efficient fuzzing. While these techniques result in path collisions [24],
we are willing to tolerate such imprecision to limit overhead costs. Coarse coverage metrics also
lower implementation costs, enabling the reuse of existing fuzzing engines (here, AFL++ [21]).
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%buf = alloca [8 x 18], align 1

%1 = getelementptr [8 x i8]x %buf, i64 @, i64 0@
6 call i64 @read(i32 0, i8x %1, i64 8)

9 %idx = getelementptr [8 x i8]* %buf, i64 @, i64 1
10 %a = load 18, i8x* %idx

(a) Original code.

%buf = alloca <{ [8 x i8], [6 x i8], i16 }>, align 16
%tag_idx = getelementptr <{ [8 x i8], [6 x i8], i16 }>* %buf, i32 @, i32 2
store 1102, i16% %tag_idx

(S IO IO RN

6

7 %buf_cast = bitcast %buf to i8%

g call void @__bb_register(i8x %buf_cast, i64 16)

9

10

11 %1 = getelementptr <{ [8 x i8], [6 x i8], i16 }>x %buf, i32 @, i32 @
12 %2 = getelementptr [8 x i8]1% %1, i64 @, i64 0

13 call 164 @read(i32 0, i8x %2, 164 8)

14

15

16 %idx = getelementptr [8 x 18], [8 x i81% %1, i64 0, i64 1
17 call 164 @__hash_def_use(i16 1234, i8x% %idx, 164 1)

18 %a = load 18, i8x* %idx

(b) Instrumented code.

Fig. 7. Example instrumentation of a stack variable def. An 8-byte buffer buf is allocated on the stack and
filled by a call to read. The second byte in buf is later read.

We adopt AFL’s hashing process for looking up data flows in the fuzzer’s coverage map. By
default, AFL represents a control-flow edge using the following hash algorithm:

i1 ey

®)

Lrev — 1> 1

Where [ is a randomly-generated basic-block identifier (assigned at compile time) and [yey is the
identifier of the previously-executed block. AFL uses the result i as an index into the coverage
map. Right-shifting [ allows AFL to differentiate between different orders of two blocks. Our hash
algorithm varies depending on the desired data-flow sensitivity (Section 4.1.3):

Simple access. Xor of the def and use site tags:

i « def® use (4)
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Access with offset. The def site tag, use site tag, and the offset being accessed. The offset (e.g.,
array index, struct offset) is computed by subtracting the base address—found using Eq. (1)—from
pointer p. We compute the hash as:

i «— def® (use+ offset) (5)

Access with value. The def site tag, use site tag, the offset, and the value accessed. The def/use tags
and offset are left-shifted to allow room for the value hash and reduce collisions. The accessed
value is divided into single-byte chunks {vg, vy, ...} that are hashed into the def-use chain:

i « (def® (use+ offset) < 2) ® (vo®0v1&D...) (6)

This is implemented as a loop, resulting in a double load of the accessed object (in addition to the
load in the original code). We implement the __hash_def_use function so that uninstrumented
data flows (i.e., those without an entry in the baggy bounds table) are bucketed in their own
coverage map entry.

5.4 Threats to Validity

5.4.1 Def Site Selection. Our def site selection approach (Section 4.1.1) is incomplete: important
data flows may be missed if the appropriate def sites are not instrumented. Per our def site
sensitivity lattice, our prototype focuses on composite types (i.e., arrays and structs) and eschews
instrumenting primitive types (e.g., integers). While this approach may miss important data flows,
we accept this trade-off, given (a) memory safety remains a key concern [50], and (b) the prohibitive
run-time overheads when tracking all def sites.

5.4.2  Custom Memory Allocators. 1dentifying def sites is complicated because many applications
do not directly call the standard allocation routines (e.g., malloc), but indirectly through a custom
memory allocator. For example, standard memory allocation routines may be wrapped in other
functions. These functions may then be indirectly called via global variables/aliases, stored and
passed around in structs, or used as function arguments.

To address the challenge imposed by custom memory allocators and memory allocation pat-
terns, DATAFLow allows the user to specify wrapper functions to tag (in addition to the standard
allocation routines). While bATAFLow requires the user to find these wrappers manually, existing
techniques [14] could assist in this process. We wrap these memory allocation routines within
trampoline functions when their address is taken (e.g., stored in a global variable). Rather than a
compile-time def site tag (which may not be statically computable), these trampolines revert to
using the lower 16-bits of the PC as the def site tag. This approach avoids the need for expensive and
imprecise static analysis (e.g., to track the access of memory allocators through global variables).

5.4.3 C++ Dynamic Memory Allocation. To simplify our instrumentation, we rewrite C++ new
calls as malloc calls. However, this prevents us from handling any std: :bad_alloc exceptions,
meaning any failed allocations will cause a program crash (irrespective of any exception handlers
in place). Such false negatives are removed by replaying crashing inputs through the original target.

5.4.4 Coverage Imprecision. Storing coarse coverage information in a compact bitmap is inherently
inaccurate and incomplete [24]. While this may limit DATAFLow’s ability to discover and explore
data flows, this limitation is not unique to DATAFLow and affects many greybox fuzzers (3, 4, 12,
16, 20, 23, 33, 43, 47, 69, 70, 73].

6 EVALUATION

We perform an extensive evaluation (> 3 CPU-yr of fuzzing) to test the following hypothesis:
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Table 2. Evaluated fuzzer configurations. Angora and DDFuzz use their default map sizes. AFL++’s LTO
instrumentation does not require a fixed-size map.

Name Map size (KB) Description

Ar1O - AFL++ with LTO instrumentation

Act - AFL++ with LTO and CmpLog instrumentation

An 1,024 Angora

DD 64 DDFuzz

Dasa 1,024 pATAFLOW with array def's and accessed uses

Da/a+0 1,024 pATAFLow with array def's and accessed offset uses

Da/a+v 1,024 pATAFLoOw with array def's and accessed value uses

Dass/a 1,024 DpATAFLow with array + struct def's and accessed uses
Da+S/A+O 1,024 pATAFLoOw with array + struct def's and accessed offset uses
Da+s/a+v 1,024 DpATAFLow with array + struct def's and accessed value uses

Data-flow-guided fuzzing offers superior performance (over control-flow-guided fuzzers)
on targets where control flow is decoupled from semantics.
Specifically, we answer the following research questions:
RQ 1 Is data-flow-guided fuzzing viable with minimal run-time overheads? (Section 6.2)
RQ 2 Does data-flow-guided fuzzing find more or different bugs? (Section 6.3)
RQ 3 Does data-flow-guided fuzzing expand more coverage? (Section 6.4)
RQ 4 Can we predict a priori the targets most amenable to data-flow-guided fuzzing? (Section 6.5)

6.1 Methodology

6.1.1 Fuzzer Selection. Our evaluation compares the performance of fuzzers using: (i) pure con-
trol-flow coverage; (ii) pure data-flow coverage; and (iii) exact and approximate DTA, combining
control-flow coverage with data-flow tracking.

We select AFL++ as the pure control-flow-guided fuzzer because it is the current state-of-the-art
coverage-guided greybox fuzzer. We configure AFL++ with: (i) link-time optimization (LTO) in-
strumentation, eliminating hash collisions; and (ii) with and without “CmpLog” instrumentation.
CmpLog—inspired by REDQUEEN’s input-to-state correspondence [5]—approximates DTA by cap-
turing comparison operands. Similarly, we select Angora as an alternative control-flow-guided
fuzzer (using context-sensitive edge coverage) that also incorporates exact DTA. Finally, we select
DDFuzz as an alternative data-flow-guided fuzzer.

We configure bATAFLow with: (i) two def site sensitivities: arrays only (“A”) and arrays +
structs (“A+S”); and (ii) three use site sensitivities: simple access (“A”), accessed offset (“O”), and
accessed value (“V”). We use the notation “X/Y to refer to the composition of X def and Y use site
sensitivities; e.g., “A/A” refers to array def and access use sites; “A+S/O” refers to arrays + structs
def and accessed offset use sites. The evaluated fuzzers are summarized in Table 2.

6.1.2  Target Selection. We evaluate the ten fuzzers in Table 2 on the following targets. We fuzz 20
target programs in total.

SPEC CPU2006. The SPEC CPU benchmark suite [28] is an industry-standardized, CPU-intensive
benchmark suite for stress-testing a system’s processor, memory subsystem, and compiler. We use
SPEC CPU2006 to answer RQ 1.

Magma. Unlike other fuzzing benchmarks (e.g., UN1Fuzz [40]), Magma [26] contains ground-
truth bug knowledge. We exclude the php target because it failed to build with AFL++’s CmpLog
instrumentation (failing with a segmentation fault). We use 15 Magma targets to answer RQ 2.
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Table 3. DDFuzz target dataset.

Target Driver Command line Commit hash
bison bison @@ -o /dev/null  5555f4d
pcre2 pcre2test @@ /dev/null db53e40
mir c2m @@ 852b1f2
qbe gbe Qe c8cd282
faust faust @@ 13def69

DDFuzz dataset. Mantovani et al. [47] select five targets—bison, pcre2, mir, qbe, and faust—they
believe to contain a large number of data dependencies, and hence are amenable to data-flow-guided
fuzzing. We use newer versions of these targets (because some did not compile on Ubuntu 20.04),
shown in Table 3. We use these targets to answer RQ 3.

6.1.3 Experimental Setup. We conduct all experiments on an Ubuntu 20.04 AWS EC2 instance
with a 48-core Intel® Xeon® Platinum 8275CL 3.0 GHz CPU and 92 GiB of RAM. Each fuzz run was
conducted for 24 h and repeated five times (ensuring statistically sound results). All targets were
bootstrapped with their provided seeds.® Finally, we (a) manually located and specified memory
allocation functions for pATAFLow to tag, and (b) used Angora’s default behavior to discard taint
when calling an external library.

6.2 Run-time Overheads (RQ 1)

Conventional wisdom assumes data-flow-based coverage metrics are too heavyweight, adversely
affecting a fuzzer’s performance by reducing its execution rate. We investigate the extent to which
this assumption is true by isolating the effects of instrumentation overhead outside of a fuzzing
environment. Per Section 6.1.2, we measure performance overheads on SPEC CPU2006.

Table 4 shows the overhead of all ten evaluated fuzzers on all 19 C and C++ targets in the
SPEC CPU2006 v1.0 benchmark suite. We compare these measurements against a baseline without
instrumentation (clang v12), calculating the geometric mean (“geomean”) and 95 % bootstrap
confidence intervals (CI) over three repeated iterations. The following results are omitted because
they failed to build or run: AFL++ (LTO) 445.gobmk triggered a run-time assertion; DATAFLow
(all configurations) 429.mcf crashed with a run-time segmentation fault; and Angora 447.dealll,
471.omentpp, 473.astar, and 483.xalancbmk failed to link with DFSAN’s run-time library.

Per Section 3, Angora has a geomean overhead of 32.79x. This is particularly notable because
previous work has found DFSaAN—the framework upon which Angora’s taint tracking mode is
built—to be one of the more performant DTA frameworks [60]. However, while this overhead is
significantly higher than AFL++ (LTO) and AFL++ (CmpLog)—which have geomean overheads
of 1.19% and 2.80x, respectively—it is important to recall Angora amortizes this cost over the
lifetime of a fuzzing campaign by only tracking taint once on a given input over many mutations.

Of the six pATAFLow configurations, A/A has the lowest overhead (10.69%), while A + S/V has
the highest (15.01x). This is unsurprising, given the rolling hash approach used for the “access
with value” use sensitivity (Section 5.3). Performance improvements are possible by specializing the
hash function based on the type of value accessed (e.g., hashing a uint64_t or float value directly,
rather than dividing it into single-byte chunks). Increasing the def site sensitivity to include structs
added minimal overhead. However, this is target specific: the median number of tracked arrays
(across the 12 SPEC CPU2006 targets) is 51, compared to 33 structs. This result may not generalize
across targets where structs outnumber arrays.

3We contacted Mantovani et al. [47] to obtain their initial seed sets.
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Table 4. SPEC CPU2006 overhead. Computed as the geomean (over three repeated iterations) relative to an
uninstrumented benchmark (compiled with clang v12). The 95 % bootstrap Cl is reported for the geomean
across all targets (for a given fuzzer). The bootstrap Cl is zero for individual targets and hence is omitted.

Fuzzer (X)

Target
400.perlbench 1.27 3.86 141.85 21.81 12.04 12.75 16.34 12.51 13.21 16.79
401.bzip2 1.26 2.17 25.83 2.54 7.75 8.53 11.12 7.69 8.49 11.09
403.gcc 1.30 3.40 21.19 3.45 19.53 21.22 26.07 19.58 21.18 26.20
429.mcf 1.12 2.46 12.08 1.52 X X X X X X
445.gobmk X 2.48 23.41 5.26 6.99 7.51 9.48 6.92 7.44 9.73
456.hmmer 1.12 3.08 60.41 1.56 13.47 15.07 21.61 13.60 14.95 21.62
458.sjeng 1.21 4.36 29.69 4.44 7.57 8.13 10.05 7.54 8.01 10.32
462.libquantum 1.20 2.40 27.09 1.61 3.81 4.04 6.97 3.70 4.14 6.97
464.h264ref 1.19 1.82 41.01 1.88 100.63 109.40 134.10 100.96 109.68 134.58
471.omnetpp 1.06 2.02 X 2.05 6.58 6.34 6.82 6.15 6.34 7.56
473.astar 1.13 2.19 X 1.59 5.53 5.83 6.80 5.60 5.96 7.28
483.xalancbmk 1.29 5.04 X 3.48 11.44 12.25 15.67 11.66 12.43 15.93

1.19 2.80 32.79 291 10.69 11.41 14.64 10.65 11.47 15.01
Geomean

+0.00 +£0.01 +034 +£0.03 £0.13 +0.18 +0.22 +0.16 +0.21 +0.21

Our results reflect those presented by Liu and Criswell [41] (e.g., 464.h264ref has the highest run-
time overhead in both the original and our works). However, there is a significant increase in our
run-time overheads compared to the original PAMD implementation [41]. To validate our PAMD
(re)implementation we evaluated a version of DATAFLow that only performed metadata lookup in
the baggy bounds table (i.e., it did not construct def-use chains nor update the fuzzer’s coverage
map). This version of DATAFLow has a geomean overhead of 3.97X. Def-Use chain construction is
a simple xor operation (Section 5.3), so we attribute this dramatic increase in run-time overhead to
the interaction of the baggy bounds table and coverage map. In particular, cache effects associated
with reading from/writing to these two tables.

Despite building on PAMD—an efficient metadata encoding scheme—DbDATAFLow remains
impaired by high run-time overheads. Maximizing fuzzer execution rates (e.g., by lowering
run-time instrumentation costs) is crucial to maximizing fuzzing outcomes.

6.3 Bug Finding (RQ 2)
Following prior work [2, 26, 29, 68], we use survival analysis to summarize our bug-finding results.
Table 5 shows the restricted mean survival time (RMST), measuring the mean time for a bug to
“survive” (i.e., remain undiscovered) five repeated 24 h fuzz runs. Lower RMSTs imply a fuzzer finds
a bug “faster”, while a smaller CI implies the fuzzer finds the given bug (at a given time) more
consistently. We use the log-rank test [46]—computed under the null hypothesis that two fuzzers
share the same survival function—to statistically compare bug survival times. Thus, we consider
two fuzzers to have statistically equivalent bug survival times if the log-rank test’s p-value > 0.05.
We present our bug-finding results in Table 5. Based on raw bug counts, AFL++ was the best-
performing fuzzer, triggering 60 bugs. The two data-flow-driven fuzzers followed this; DDFuzz (44
bugs) and pATAFLow (41 bugs). Angora was the worst-performing fuzzer, triggering only 24 bugs.
DATAFLow with “simple access” use sensitivity (DFa;a and DFa.g/4) was the best performing
version of DATAFLow (39 bugs). This was followed by DFa.s/0 (31 bugs). DATAFLow was “accessed
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Table 5. Magma bugs, presented as the RMST (in hours) with 95 % bootstrap Cl. Bugs never found by a
particular fuzzer have an RMST of T (to distinguish bugs with a 24 h RMST). We only report the RMST for
bugs triggered; bugs not triggered by any fuzzer are omitted. The best performing fuzzer (fuzzers if the bug
survival times are statistically equivalent per the log-rank test) for each bug is highlighted in green (smaller

is better).
Fuzzer
Target Driver Bu,
€ € Ao Aa An DD DFya DFyo DFav DFasa DFaso  DFassy
PNG003 0.01 0.01 0.01 0.05 0.03 0.06 0.24 0.04 0.03 0.99
+0.01 +0.01 +0.01 +0.01 +0.02 +0.01 +0.15 +0.02 +0.03 +0.44
T 0.02 0.07 T T T T T T T
lib, read_fuzzer P
opng - NG006 +0.02 +0.03
PNG007 7.47 17.54 T 19.49 23.38 T T 19.49 19.94 T
+6.93 +4.15 +7.37 +1.39 +10.21 +9.19
0.43 0.72 - 1.75 0.78 19.97 T 0.77 20.44 T
SNDo01 +0.27 +0.29 +0.55 +0.20 +6.74 +0.32 +8.07
SND005 0.55 0.62 - 2.05 5.63 23.25 T 5.63 15.32 20.49
+0.21 +0.43 +0.79  +2.25 +1.69 +1.55 +7.81 +7.96
0.36 0.26 - 1.06 6.54 T 19.52 3.05 T 18.96
SND006 +0.23 +0.16 +0.21 2507 +10.15 +2.43 +8.45
libsndfile  sndfile_fuzzer SND007 0.64 0.27 - 2.53 1.39 T T 3.33 21.12 22.57
+0.27 +0.16 +0.54 +£0.73 +2.21 +6.52 +3.24
SNDO017 0.43 0.06 - 0.00 0.01 0.74 0.04 0.02 0.01 14.42
+0.28 +0.02 +0.01 +0.02 +1.21 +0.04 +0.02 +0.01 +11.50
SND020 0.71 0.49 - 0.60 0.30 4.76 1.71 0.61 5.53 15.15
+0.30 +0.14 +0.11  +0.20 +2.72 +0.57 +0.36 +7.39 +10.63
SND024 0.31 0.26 - 1.03 0.50 21.61 19.38 0.60 21.03 15.07
+0.24 +0.16 +0.21 +0.30 +3.20 +10.45 +0.26 +6.73 +10.72
TIF002 18.44 T T T T T T T T T
+6.92
TIF007 0.01 0.02 0.81 0.27 0.17 0.95 19.62 0.31 2.20 14.93
+0.01 +0.01 +0.40 +0.11 +0.07 +0.63 +9.92 +0.18 +1.85 +10.89
read_rgba_fuzzer TIF008 L T T T T T T T T T
+5.16
TIF012 0.16 0.99 6.09 10.32 3.71 14.83 T 4.56 19.50 T
+0.05 +0.47 +7.19 +6.45 +1.45 £11.01 +3.05 +10.17
TIFO14 0.60 1.26 T 15.46 14.15 20.12 T 20.07 19.45 T
+0.20 +0.37 +10.33 +7.31 +8.79 +8.90 +10.29
TIF005 T T N ;ggi T T T T T T T
libtiff -
TIF006 7.52 15.40 10.14 T 22.86 T T 18.12 T T
+4.11 +8.28 +6.14 +2.59 +7.14
TIF007 0.03 0.02 0.73 0.29 0.26 6.26 1.68 0.38 0.66 10.57
+0.02 +£0.02 +0.66 +0.09 +0.08 +7.22 +0.45 +0.20 +0.16 +9.61
. T 2217 T T T T T T T T
tiffc TIF008
P +4.13
10.33 13.30 T T 17.70 T T T T T
TIF009 +6.86 +7.97 +7.79
TIF012 0.26 0.71 11.57 11.14 4.99 20.42 T 7.02 T T
+0.13 +0.27 +9.09 +7.90 +1.97 +8.11 +6.80
TIF014 0.50 1.60 14.23 8.79 12.87 20.31 T 13.78 14.22 T
+0.21 +0.70 +7.56 +6.65 +8.05 +8.35 +7.91 +6.59
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Table 5. Magma bugs (continued).

Fuzzer
Target Driver Bu;

& & Ao Ac  An DD DFas  DFao DFay DFasia DFaso  DFassy
T T 10.16 13.11 23.23 T T 19.99 T T

XMLOOL +3.03 +6.48 +1.74 +4.84
XML002 19.51 T T T T T T T T T

+10.15

4.00 0.78 0.01 0.03 0.04 0.05 0.05 0.05 0.04 0.05

read_memory_fuzzer
- v- XML003 +3.45 +0.61 £0.01 £0.03 +£0.05 +0.00 +0.04 +0.05 +0.05 +0.06

MLOOS 107 095 T 1459 338 1531 T 670 1572 T
£0.35 +£0.29 £6.94 +£3.11 +10.48 +6.33  +£10.08
XMLOL7 001 001 001 001 007 008 007 0.07 0.07 0.07
— £001  £001 +0.01 001 £0.00 £0.00 =000  £0.00  +0.00  +0.00
22.88 T T 001 006 008 007 0.06 0.07 0.07
XMLO001
+2.53 £0.01  +£0.00  £0.00 +0.00  +£0.00  +0.00  +0.00
XMLO002
002 o4
059 114 420 716 157 1853 T 118 1565 T
xmllint XML009
£0.24 061 +0.12 +370 +0.74  +8.70 +0.65  +£10.03
XMLO12 20.61 22.30 T T T T T T T T
499 +3.84
NMLoL7 002 002 001 002 005 006 005 0.05 0.05 0.05
£0.02 +£0.02 +0.01 =002 +0.04 +0.04 =000  £0.05  +0.00  +0.00
LUA003 T T T T T T T 19.81 T T
+9.47
I 1
ua ua - 606 1038 T 022 002 001 002 0.01 0.21 0.01
£3.88  +5.67 £0.37  +£0.02  £0.02 001  +£0.02  +037  +0.02
353 834 T 2183 T T T T T T
e SSLOOL L 338 i4s6 +3.63
S5L003 005 003 000 001 001 001 002 0.01 0.01 0.01
£0.07 +£0.03 +0.01 +£0.01 +0.02  +0.02 +0.03  +0.02  +0.01 0.02
lient $5L002 006 006 001 005 002 003 003 0.02 482 0.03
openssl £0.00 +£0.00 +0.01 005 +0.02  +0.03 =003  +0.03 1085  +0.02
S5L002 008 009 018 500 052 069 069 5.22 0.39 0.58
corver £0.00 +£0.01 +0.02 +£7.60 +0.00 +0.16 027  +£7.51  +0.04  +£0.02
SsL0z0 20.78 T 613 2190 T T T T T T
+6.00 +0.14 +4.76
T T 001 011 002 002 002 0.02 0.01 0.02
L
X509 SSL009 £0.02  +£0.00 002  £0.02 +0.02  £0.02  £002  +0.02
PDFOL0 108 147 T 223 1101 T 1614 7.91 1690 2222
+0.54  +0.96 +1.33  +4.15 +947  +6.84  +£5.17  +4.03
PDFOL6 003 002 023 016 037 031 027 031 0.25 0.49
£0.01 +£0.02 +0.00 =003 £0.09 +0.01 =001  £0.02  +0.01  +0.03
1760 15.86 T 1735 2000 T T T T T
ler  pdf_f
poppler pdt_fuzzer PDFOIS 0 +414 +827 +5.16
PDF019 23.14 T T T T T T T T T
+1.94
23.52 T T 2230 T T T T T T
PDFO021
0 £1.09 +3.86

value” use sensitivity was the worst performer. This suggests incorporating variable values at use
sites is not worth the increased run-time cost; simply tracking the existence of def-use chains is
“good enough” (for discovering bugs).
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Table 5. Magma bugs (continued).
Fuzzer
Target  Driver Bu,
& & Arto AcL An DD  DFaa DFao  DFay DFassia DFawsio DFassv
PDF002 T 2131 T T T T T T T T
+6.08
PDF003 6.89 13.29 0.01 0.00 0.00 0.00 0.00 0.00 4.80 0.00
+3.26 +3.79 £0.01 +0.01 +0.01 +0.01 +0.01 +0.01 +10.86 +0.01
PDFOL1 T 1988 T T T T T T T T
+9.33
pdfimages PDFO16 0.02 0.01 0.20 0.11 0.20 0.13 0.19 0.15 491 0.16
+0.01 +0.01 +0.06 +0.04 +0.08 +0.03 +0.05 +0.03 +7.64 +0.02
PDF018 3.68 9.13 T 14.63 20.66 T T 6.56 T T
+1.61 +6.32 +6.86 +7.57 +7.09
21.99 1437 T T T T T T T T
PDF019 +4.54 +7.73
PDF021 T +2§.;Z T T T T T T T T
poppler -
20.72 T T 22.86 T T T T T T
PDF006 +7.43 +2.57
PDF00S T T T 2349 T T T T T T
+1.16
PDF010 2.20 1.78 12.52 13.13 3.70 T 19.50 3.66 19.54 17.32
+1.15 +0.56 +7.98 +7.80 +0.71 +10.18 +1.30 +10.10 +8.99
. T
pdftoppm poFo1L 2120 T T T T T T T T
+6.14
PDFO16 0.05 0.02 1.29 0.19 0.30 0.23 0.30 0.42 0.17 0.37
+0.05 +0.02 +0.46 +0.07 +0.06 +0.02 +0.06 +0.14 +0.02 +0.02
15.87 15.34 T 16.95 15.80 T T 18.77 T T
PDF018 +5.87 +4.72 +6.77 +9.85 +6.28
T  17.10 T 2074 T T T T T T
PDF021 +8.38 +7.38
0.72 1.59 T 11.67 15.07 21.30 T 19.40 T T
SQLooz +0.21 +0.84 +4.01 +10.75 +£6.12 +10.40
22. 22.74 T T T T T T T T
SQL012 2
+2.41 +2.86
T ; T T T T T T T T
SQL013 ff ‘l*z
sqlite3  sqlite3_fuzz -
SOLO14 4.38 5.60 T T T T T T T T
+2.57 +4.45
1.74 2.74 T 17.17 T 21.49 T 20.03 23.75 T
SQLo18 +0.87 +1.37 +8.20 +5.68 +9.00 +0.56
17.70 T T T T T T T T T
sQuozo o

AFL++ remains the best-performing fuzzer when accounting for RMSTs (i.e., it triggers bugs
fastest), outperforming the data-flow-guided fuzzers for the majority of bugs triggered (60 %).
However, this result is reversed (i.e., the data-flow-guided fuzzers outperform AFL++) for 14 % of
the triggered bugs. Notably, pATAFLow was the only fuzzer to trigger LUA003 (not previously
triggered by any fuzzer in any prior Magma evaluation), while bATAFLow and DDFuzz triggered
XMLO001 (xmllint) and LUA004 orders-of-magnitude faster than AFL++. DDFuzz was the only
fuzzer to trigger PDF008. However, this bug was only triggered once (over five trials) and towards
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the end of the trial (after 20 h). This suggests that the bug is difficult to find and DDFuzz may have
just “gotten lucky”. Finally, AFL++ either failed to trigger or was orders-of-magnitude slower at
triggering SSL009 (x509) and PDF003 (pdfimages). Do these bugs share properties that make them
amenable to discovery via dat -flow-guided fuzzing? To answer this question, we examine the two
lua bugs in greater depth.

1 #define 1l_checkmodep(m) ((m[@] == 'r' || m[@] == 'w') && m[1] == '\@"')

Fig. 8. LUA003 missing popen check.

LUA003. This bug is caused by a missing check of the “mode” argument to popen. The check is
shown in Fig. 8. While the check is quickly reached by DDFuzz (after ~4 h) and all six DATAFLow
variations (on average, after ~60 s), the exact trigger conditions were only met once by DFa.g/a.
Upon examining the compiled binary, we found the second check (m[1] == '\e') was optimized to a
branchless operation (i.e., it did not contain conditional control flow). This effectively makes the
program state where m[1] != '\e' invisible to a control-flow-guided fuzzer (in particular, there is no
explicit edge for AFL++ to instrument). This state is explicitly visible to bpATAFLow, which reaches
it after ~19 h of fuzzing.

LUA004. This is a logic bug, caused by a missing update to the interpreter’s “old” program counter
(occurring under particular conditions when tracing the execution of a Lua function). Again, there is
no explicit “state” in the target’s CFG for the fuzzer to reach. Instead, the bug is triggered when the
oldpc field in the lua_State struct is not updated. This only happens under particular conditions,
again depending on specific data values.

The control-flow-guided fuzzers (AFL++ and Angora) outperform the data-flow-guided fuzzers
(DDFuzz and pATAFLOW) on 60 % of the triggered Magma bugs. However, the data-flow-guided
fuzzers significantly outperform the control-flow-guided fuzzers (by orders-of-magnitude)
on 11 % of the triggered bugs. These results suggest that fuzzers guided by control flow and
data flow should be combined to maximize bug-finding potential.

6.4 Coverage Expansion (RQ 3)

Control-flow coverage is typically quantified by reasoning over the target’s CFG (e.g., basic blocks,
edges, lines of code). For example, FuzzBENCH replays the fuzzer’s queue through an independent
and precise (i.e., collision-free) coverage metric; specifically, Clang’s source-based coverage [48, 67].
However, the equivalent process for quantifying data-flow coverage does not exist.

We quantify coverage expansion using both control-flow and data-flow metrics, using (a) static
analyses to approximate an upper bound, and (b) dynamic analyses to quantify coverage expansion
against this upper bound. The usual limitations of static analysis (e.g., undecidability) mean this
upper bound may be larger than the set of executable coverage elements (e.g., a code region may
not be reachable from the target’s driver, or a pointer’s points-to set may be over-approximated).
We accept this imprecision for both metrics. We use the Mann-Whitney U-test [45] to statistically
compare dynamic coverage across fuzzers: two fuzzers cover the same number of coverage elements
if the Mann-Whitney U-test’s p-value > 0.05.

Control-flow coverage. We use Clang’s existing source-based coverage metric [67]. Specifically,
we use region coverage (as used by FuzzBENcH), Clang’s version of statement coverage. Like classic
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statement coverage, region coverage is more granular than function and line coverage [32]. Region
information is embedded into the target during compilation and can be statically extracted using
existing LLVM tooling (to obtain the upper bound).

Data-flow coverage. We develop an SVF-based [63] static analysis to compute the set of def-use
chains in a target (for the set of tracked variables, as determined by the chosen def site sensitivity).
This analysis leverages a flow- and context-insensitive interprocedural pointer analysis based on
the Andersen algorithm [1].* For the dynamic analysis, we modify the PAMD metadata stored at
each def site (Section 5.2.1) to store a tuple of (variable name, location), where location is another
tuple (source filename, function name, line, column). Both tuples are constructed by extracting
source-level information from the target’s debug information. A use site (Section 5.2.2) is similarly
labeled with a location tuple. Unlike the 16-bit tags used by pATAFLow, this approach does not
result in hash collisions and is precise (albeit with a higher run-time cost). Importantly, neither
the static nor dynamic analysis take into account def-use chain values. We also exclude dynamic
memory allocations from these analyses (to simplify run-time def-use tracking when faced with
custom memory allocators, per Section 5.4.2).

Table 6 and Figs. 9 and 10 summarize our coverage expansion results. Two targets, bison and
faust, failed to build with AFL++’s CmpLog (again, due to a segmentation fault) and are excluded
from our results.

AFL++ is again the best-performing fuzzer, achieving the highest control-flow (i.e., code region)
coverage. CmpLog improves AFL++’s already-strong coverage expansion capabilities. These results
are unsurprising, given control-flow coverage (specifically, edge coverage) guides AFL++. Similarly,
Angora again performs poorly, outperformed by both DDFuzz and bATAFLow in maximizing both
control- and data-flow coverage. Curiously, however, AFL++ also achieves the highest data-flow
(i-e., def-use chain) coverage. This is despite DATAFLow’s data-flow guidance. We attribute this
(surprising) result to the differences in fuzzer execution rates (i.e., the number of inputs executed by
the fuzzer per unit of time).

6.4.1  Accounting for Execution Rates. AFL++ (LTO) achieves a mean execution rate of 1,172 execs/s
(median 347 execs/s). In contrast, DDFuzz, Angora, and DATAFLow achieve mean execution rates
of 974, 616 and 270 execs/s, respectively (median 442, 249 and 144 execs/s). This dramatic decrease
in execution rates reflects our overhead results in Section 6.2.

To account for differences in execution rates, rather than comparing coverage at the end of each
fuzz run (i.e., after 24 h of fuzzing), we compare coverage at a given execution (“exec”). Specifically,
we compare coverage at the last exec of the slowest fuzzer (i.e., with the lowest execution rate).
Intuitively, this places a “ceiling” on the coverage achieved by faster fuzzers (i.e., those able to
execute more inputs within a single 24 h fuzz run). For example, DF4.g/v is the slowest fuzzer on
bison (85 execs/s). Thus, we compare the coverage achieved at the last execution of DFa.sy (exec =
7,358,231), implicitly ignoring any additional coverage expanded after this exec. Unfortunately,
Angora does not provide the necessary information to map coverage to a particular exec, so we
exclude it from our analysis (despite it being the slowest fuzzer on two targets: bison and faust).

We present coverage “normalized” against execution rates in Table 7. DATAFLow is now more
competitive (against AFL++) in expanding data-flow coverage. It achieves the highest def-use chain
coverage on bison and faust, and is only ~4 % behind the number of def-use chains expanded by
AFL++ on gbe. Again, increasing DATAFLoW’s use sensitivity to include variable values fails to
improve fuzzing outcomes. These results reinforce our belief that fuzzer execution rates have a
significant impact on fuzzing outcomes.

4We experimented with SVF’s flow-sensitive interprocedural analysis but found the run-time overheads prohibitively large.
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Fig. 9. Control-flow coverage expansion over time. The x-axis is time in seconds (log scale), and the y-axis is
the percentage of code regions expanded (against the static upper bound in Table 6a). The mean coverage
(over five repeated trials) and 95 % bootstrap Cl is shown.
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Table 6. Coverage expansion (control and data flow) on DDFuzz targets, reported as the mean over five repeated
trials with 95 % bootstrap Cl. The “static” results give an approximate upper bound, while the “dynamic”
results give the percentage of coverage elements covered at run time. The best performing fuzzer (fuzzers
if the coverages are statistically equivalent per the Mann-Whitney U-test) for each target is highlighted in
green (larger is better).

(a) Control-flow coverage. Quantified in terms of Clang’s code region coverage.

Dynamic (%)

Target Static (#
& ®) ArtO AcL An DD DFaa DFajo DFayv DFassja DFassio DFassv
. 33.47 X 30.84 29.95 32.47 30.83 27.95 31.31 29.59 28.28
bison 35,476
+0.08 +0.31 +3.21 +0.39 +0.11 +0.56 +0.12 +0.23 +0.27
56.35 62.22 23.01 37.56 36.21 22.63 21.51 36.13 21.13 23.01

re2 3
pereztest 36,973 +1.78 2= Zolld +1.68 +0.30 +0.00 +1.31 +1.25 +0.32 +0.66 +1.98

com 43.765 45.35 45.86 43.81 45.45 44.22 41.99 41.95 44.18 42.02 41.78
’ +0.07 x0.08 +0.22 *0.07 £0.09 x0.15 +0.22 +0.08 +0.21 +0.17

be 5.400 76.15 76.34 73.94 76.03 74.17 73.03 73.84 74.54 73.20 74.11
4 ’ +0.19 +£0.21 +£0.03 +£0.15 £0.09 +0.03 +£0.12 +0.11 +0.14 +0.07
faust 26.872 32.11 X 29.02 32.07 31.02 30.17 30.57 31.13 30.16 30.31
’ +0.32 +0.09 £0.20 +£0.08 +0.04 +£0.04 +0.17 +0.03 +0.12

(b) Data-flow coverage. Quantified in terms of interprocedural def-use chains (scaled by x1073, due to
the small percentage of def-use chains covered across all targets). The c2m target is excluded because it
unexpectedly crashed with our precise data-flow tracking instrumentation.

Dynamic (x1073 %)

Target Static (#
& ® Arto AcL An DD DFaa DFajo DFanv  DFassia DFawsio DFassv
. 11.60 X 9.94 10.40 11.27 10.71 9.57 11.26 10.60 9.84
bison 2923196 010 +£0.17 +0.17 +0.26 =010 +0.33  +0.16  +0.03  +0.28

181.03 205.78 78.24 12553  122.72 76.12 69.51 124.83 69.73 73.82

pereztest  LAOLTT8 1478 11614 +7.23 +153 +1.30 +487 £571  +1.65  +2.86  +5.99

c2m 25,462,192
be 450.407 381.97 378.68 178.28 376.64 363.01 352.61 356.21 366.20 353.24 355.77
q ’ +3.06 +4.46 +0.47 +3.62 +1.71 +0.36 +1.38 +0.40 +0.62 +4.22
5.46 4.88 5.55 5.19 4.81 5.01 5.34 4.78 4.89
faust 159,515,187 d
+0.06 +0.07 £0.06 +0.01 +0.03 +0.05 +0.03 +0.02 +0.07

The control-flow-guided fuzzers (specifically, AFL++) achieve the highest control- and data-
flow coverage. Data-flow-guided fuzzers require more complex instrumentation (compared to
control-flow-guided fuzzers), impairing the fuzzers’ execution rates.

6.5 Characterizing Data-Flow (RQ 4)

The fuzzing community has largely settled on control-flow-based coverage metrics—in particular,
edge coverage—to drive a fuzzer’s exploration. While prior successes have largely validated this
approach [18, 56, 58, 65, 73], we wish to understand what (if any) program characteristics lend
themselves to data-flow-based coverage.
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Fig. 10. Data-flow coverage expansion over time. The x-axis is time in seconds (log scale), and the y-axis is
the percentage of def-use chains expanded (against the static upper bound in Table 6b). The mean coverage
(over five repeated trials) and 95 % bootstrap Cl is shown.

Mantovani et al. [47] propose the DD ratio—defined as the ratio between the number of basic
blocks instrumented with data-dependency information over the total number of basic blocks
in the target—to determine whether data-flow-based coverage (derived from the target’s DDG)
adds value (e.g., over edge coverage). A higher DD ratio suggests the target is more amenable to
data-flow-guided fuzzing; a target with a DD ratio above 10 % is considered strongly data dependent.

Table 8 summarizes the DD ratio of our 20 target programs.’ Thirteen of these targets (65 %)
have DD ratios > 10 %, indicating their suitability for data-flow-guided fuzzing. However, we found
little correlation between a target’s DD ratio and fuzzing outcomes (both bug finding and coverage
expansion). For example, png_read_fuzzer had the highest DD ratio among the Magma targets
(13.40 %), closely followed by xmllint (13.03 %). However, AFL++ outperformed the data-flow-
guided fuzzers (DDFuzz and DATAFLOW) on both targets (across bug counts and survival times).

These values differ from the original DDFuzz evaluation [47] because we used newer versions of the targets (per Section 6.1.2).
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Table 7. Coverage expansion—control and data flow (“CF” and “DF”, respectively)—on DDFuzz targets. In
contrast to Table 6, which reports the (mean) coverage achieved at the end of a 24 h fuzz run, here we report the
(mean) coverage at the last exec of the slowest fuzzer (“Exec” occurring at the given “Time”). Dynamic coverage
is quantified in terms of the static analysis results in Table 6 (the DF results are again scaled by x1073). The
best performing fuzzer (fuzzers if the coverage is statistically equivalent per the Mann-Whitney U-test) for
each target is highlighted in green (larger is better).

Target Exec (#) Time (hr) Metric

Dynamic (%, X1073 %)

ArtO AcL DD DFaa DFao DFav  DFassia DFawsjo  DFassiv
oF 3235 X 2839 3217 3064 2789  30.90 2054 2811
£0.09 +371 047 011 £053  +£020  £023  +0.51

bi 7,358,231 13.74
son 298 DF 10.95 X 956 1106 1059  9.55 11.03 10.56 9.79
£0.09 £208 024 +0.06 034  +£0.08  +£0.08  +0.35
oF 3751 5579 3666 3585 2256 2138 35.82 2112 23.01
£0.30  +1.09 +0.16 +£0.00 +1.28 =1.15 029  +0.66  +1.98

2 2 22
pere2test 37,992,897 8 o 12440 18284 12242 12102 7596  69.08  123.47 69.73  73.82
+1.69 +11.61 +0.77 +0.68 <472 531  +1.68  +2.83  +5.99
o 4320 4344 4341 4284 4144 4167 4277 4139 416l
+0.13  £0.08 +£0.27 +0.11 +024 025  +£0.22 011  +0.19
cam 516,654 5.27 . . . - . . . . -

DF
oF 7539 7527 7528 7411 7293 7382 74.41 73.02  74.05
£0.07  +£0.12 £0.10 +0.12 +0.06 +£0.12  +0.10  +0.13  +0.09
12,589,4 15.

abe 589,430 578 OF 368.69 36838 36833 36203 35253 35617 36483 35293  355.68
£133  +173 +£1.20 +1.89 038 £1.33  +0.75  +0.67  £4.26
oF 31.26 X 3105 3080 3012 3049  30.86 3015 3025
£0.04 £0.08 +£0.06 +0.04 =006  +£0.08  +£0.04  +0.12

faust 1,033,846 23.97
aus 033 oF 5.25 X 522 513 479 499 5.22 4.77 4.87
£0.02 £0.01 001 £0.03 =005  £000  £0.01  +0.08

Table 8. Characterizing data flow using the data dependency ratio (“DD ratio”) introduced by Mantovani
et al. [47]. Strongly data-dependent targets (i.e., those with a DD ratio > 10 %) are highlighted in green.

(a) Magma.

Target

DD ratio (%)

png_read_fuzzer
sndfile_fuzzer
tiff_read_rgba_fuzzer
tiffcp
xml_read_memory_fuzzer
xmllint

lua

asnl

client

server

x509

pdf_fuzzer

pdfimages

pdftoppm

sqlite3_fuzz

13.40
12.14
12.01
11.37
12.86
13.03
12.73
9.89
9.99
9.98
9.98
11.62
9.33
11.77
12.80

(b) DDFuzz targets.

Target DD ratio (%)
bison 6.59
pcre2test 22.60
c2m 21.82
qbe 12.45
faust 7.29
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Similarly, pcre2test and c2m had the highest DD ratios among the DDFuzz targets (22.60 and
21.82 %, respectively). Again, AFL++ outperformed the two data-flow-guided fuzzers (across both
control- and data-flow coverage expansion).

Based on these results, we conclude that the DD ratio is not suitable for determining a target’s
suitability for data-flow-guided fuzzing. We propose an alternative approach in Section 6.7.

The “DD ratio” is not suitable for determining whether a target is amenable to data-flow-guided
fuzzing. Alternative approaches are required.

6.6 Discussion

Comparison to the registered report. DATAFLow’s implementation has evolved significantly
since the initial registered report [30]. In particular, def-use chain tracking changed from using
low-fat pointers to PAMD (Section 5.2). Consequently, heapification of all tracked def sites is no
longer required (only def sites that cannot be statically resized to fit the PAMD metadata require
heapification). Surprisingly, this resulted in higher run-time overheads. Despite this, our bug-finding
results improved from triggering 10 bugs to triggering 41. We attribute this improved result to
PAMD’s robustness and its ability to work on a wider variety of targets (e.g., openssl failed to build
with DATAFLow in our preliminary evaluation).

Coverage sensitivity. In Section 4.1, we introduced a framework for reasoning about and con-
structing data-flow coverage metrics for greybox fuzzing. This framework allows the user to balance
precision with performance. Our results suggest that fuzzing outcomes (i.e., bug finding and cover-
age expansion) fail to improve as precision increases. Notably, this finding also applies to Angora;
Angora’s exact DTA provided little benefit over the approximate DTA used by AFL++’s CmpLog
mode. Our results reflect prior findings that demonstrate the importance of maximizing fuzzer
execution rates [5, 23, 29, 54, 72].

Bugs vs. coverage. Bohme et al. [9] found the fuzzer best at maximizing coverage expansion
may not be the best at finding bugs. Our results reflect this finding; despite AFL++ outperforming
DATAFLOW on coverage expansion (Section 6.4), DATAFLow triggered bugs AFL++ failed to find
(Section 6.3). Ultimately, fuzzers are deployed to find bugs and vulnerabilities; our findings reinforce
the need for bug-based fuzzer evaluation [26, 38, 74] (not only a comparison of coverage profiles).

Computing coverage upper bounds with static analysis. In Section 6.4 we used static analysis to
approximate a coverage upper bound (for both control- and data-flow coverage). In theory, this
upper bound is useful for estimating the residual risk of ending a fuzz run before maximizing
coverage (analogous to the residual risk of missing a bug [6]). In practice, static analysis of “real-
world” programs is fraught; dynamically loaded, JIT, and inline assembly code all impact precision.
Even specific command-line arguments influence the reachability of particular code regions. Thus,
it is difficult to determine how realistic the upper bounds in Section 6.4 are. We leave it to future
work to improve estimating coverage-based residual risk.

Testing our hypothesis. We hypothesized that data-flow-guided fuzzing offers superior perfor-
mance on targets where control flow is decoupled from semantics. Our results lead us to re-
ject this hypothesis. In most cases, control-flow-guided fuzzers outperformed data-flow-guided
fuzzers (across both bug-finding and coverage-expansion metrics, and on targets identified as being
amenable to data-flow-guided fuzzing). However, we are not prepared to give up on data-flow-
guided fuzzing; despite lower run-time costs than DTA, DATAFLOW’s run-time costs remain high,
negatively impacting coverage expansion. Despite this impediment, baATAFLow discovers bugs
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control-flow-guided fuzzers do not. We believe reducing the run-time costs of data-flow-guided
fuzzers will improve fuzzing outcomes.

6.7 Future Work

The significant run-time overheads remain the primary impediment to the adoption of data-flow-
guided fuzzing (see Section 6.2). Liu and Criswell [41] propose using interprocedural optimizations
to eliminate unnecessary object (de)allocation in the baggy bounds table, improving performance.
Similarly, more sophisticated pointer analyses (e.g., those provided by SVF) could be used to
eliminate unnecessary def/use site instrumentation (e.g., removing redundant instrumentation
when def-use chains can be statically identified).

Per Section 5.3, DATAFLowW is prone to hash collisions. It is well known that hash collisions
cause fuzzers to miss program behaviors [24]. While AFL++’s LTO mode solves the hash collision
problem for edge coverage, we did not investigate a similar technique for def-use chain coverage.
A hash-collision-free pATAFLow may lead to improved coverage expansion.

Finally, bDATAFLow exclusively uses def-use chain coverage to drive exploration. In contrast,
other data-flow-guided fuzzers (e.g., INvsCov [20], DDFuzz [47]) combine data flow with control
flow. Given our bug-finding results—i.e., those where DATAFLow significantly outperformed AFL++
(e.g., LUA003, LUA004, SSL009, and PDF003)—combining DATAFLow with hash-collision-free edge
coverage may provide a “best of both worlds” solution (echoing the conclusions reached by Salls
et al. [57]). This combination of coverage metrics could be realized by combining control- and
data-flow coverage in a single coverage map, maintaining separate coverage maps, or dynamically
switching between different instrumented targets.

Our results in Section 6.5 led us to conclude that the DD ratio was not suitable for determining
a target’s suitability for data-flow-guided fuzzing. Prior work on characterizing programs for
automated test suite generation is also unsuitable; e.g., the approaches proposed by Neelofar et al.
[52], Oliveira et al. [53] are specific to object-oriented software and focus on control-flow features.
Instead, we propose subsumption.

We say that coverage metric M strictly subsumes metric My, if covering all coverage elements
in M also covers all elements in M. For example, edge coverage strictly subsumes basic block
coverage. Relaxing this definition of strict subsumption allows us to quantify the number of coverage
elements in M, not subsumed by M. Intuitively, more elements in M, not subsumed by M;
implies fuzzing with M, will lead to behaviors not detectable by M;. Static data-flow analysis
frameworks such as those proposed by Chaim et al. [11] can be used to perform this subsumption
analysis. We leave the investigation of such techniques for future work.

7 CONCLUSIONS

Observing fuzzers that introduce taint tracking along with control flow, we investigate data flow as
an alternate coverage metric, making data-flow coverage a first-class citizen. Driven by empirical
results and the conventional wisdom gathered over years of software-testing research, we hypothe-
sized data-flow-guided fuzzing to offer superior outcomes (over control-flow-guided fuzzing) in
targets where control flow is decoupled from semantics.

Our results show that “classic” control-flow-guided fuzzing produces better outcomes (bug finding
and coverage expansion) in most cases. The high run-time costs associated with data-flow tracking
impaired the fuzzer’s ability to explore a target’s behavior efficiently. Despite these costs, our data-
flow-guided fuzzer discovered bugs control-flow-guided fuzzers did not. These results suggest that
data-flow-guided fuzzers discover different, not more, bugs. Specifically, bugs existing in program
states not explicitly visible in the target’s CFG. A better understanding of bug characteristics, rather
than program characteristics, may shed light on this result. We release our data-flow sensitivity
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framework and DATAFLow prototype at https://github.com/HexHive/datAFLow. Our hope is to
stimulate further research into data-flow-guided fuzzing.
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