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Abstract: Coverage-based fuzz testing and dynamic symbolic execution are both popular program testing techniques.
However, on their own, both techniques suffer from scalability problems when considering the complexity of modern software.
Hybrid testing methods attempt to mitigate these problems by leveraging dynamic symbolic execution to assist fuzz testing.
Unfortunately, the efficiency of such methods is still limited by specific program structures and the schedule of seed files. In this
study, the authors introduce a novel lazy symbolic pointer concretisation method and a symbolic loop bucket optimisation to
mitigate path explosion caused by dynamic symbolic execution in hybrid testing. They also propose a distance-based seed
selection method to rearrange the seed queue of the fuzzer engine in order to achieve higher coverage. They implemented a
prototype and evaluate its ability to find vulnerabilities in software and cover new execution paths. They show on different
benchmarks that it can find more crashes than other off-the-shelf vulnerability detection tools. They also show that the proposed
method can discover 43% more unique paths than vanilla fuzz testing.

1 Introduction
Fuzz testing is a popular technique for automatic software
vulnerability detection [1–3], but suffers from low efficiency when
applied to real-world software [4–9]. Software often parses
complex input formats such as PDF, DOCX, or JPEG, which
generates deep execution paths with complex conditions.
Traditional random fuzzers generate shallow test cases because
they are unable to guess the inputs that would help reach deeper
parts of the code. More sophisticated fuzzers discard test inputs
that do not add new coverage and keep the remaining inputs in a
seed file queue. They then derive new test input from the seed
queue using genetic algorithms [8–10]. Although coverage-based
fuzz testing is able to discover more paths than traditional fuzz
testing, it is nevertheless incapable of triggering bugs that are
deeply nested in complex code areas, due to the random nature of
the mutations.

Dynamic symbolic execution alleviates some of the challenges
encountered by fuzzers. Whereas fuzzers try millions of different
concrete inputs (e.g. ‘abc’, 1,...) in order to reach deeper parts of
the code, symbolic execution uses symbolic inputs (e.g. λ) that
concisely summarise all possible concrete values (e.g. all values of
a 32-bit integer). When a symbolic value reaches a branch
condition, the symbolic execution engine invokes a constraint
solver in order to compute the exact value that would drive the
program down the desired path. Unfortunately, pure symbolic
execution often results in an exponential number of paths that
bottlenecks the constraint solver.

Recent work aims to combine the advantages of symbolic
execution and fuzz testing. In this hybrid approach [11–14], corner
cases that are difficult for fuzzers to cover are generated from
dynamic symbolic execution by solving the corresponding path
constraints. Conversely, dynamic symbolic execution also benefits
from the fuzzer-generated seeds in order to quickly reach more
code areas without getting lost in a large execution tree. Driller,
which is built on top of the Angr symbolic execution engine [15],
and the AFL fuzzing engine [10], have attempted to leverage
symbolic execution to solve the branches guarded by complex path
conditions to avoid saturation of fuzzer [9]. Driller's performance

in DARPA's cyber grand challenge [16] demonstrates the potential
of these hybrid testing approaches.

In hybrid testing, such as Driller, the performance gain from
dynamic symbolic execution is still limited by particular program
structures, such as symbolic pointers and loops [4, 17–19]. These
structures quickly generate many redundant paths that do not
trigger new behaviours but result in path explosion. This is
compounded by the possibly large number of seed files generated
by the fuzzer.

This paper makes three main contributions. We propose three
new techniques to improve the efficiency of hybrid testing. First,
we improve the lazy concretisation of symbolic pointers (LCSPs)
presented in [20]. Second, we enhance the AFL's loop bucketing
technique [10] in order to avoid getting stuck in loops that have a
symbolic iteration counter. Third, in order to address the large size
of the seed queue, we propose a distance-based seed selection
algorithm in order to improve coverage when testing time is
limited. Each seed in the queue is weighted by runtime
information, i.e. path and memory coverage, then the seed with
greater weight is assigned with more mutation times. We also
implemented our prototype BREACHER and benchmarked it on (i) a
sample program that contains nine different types of representative
bugs, (ii) the LAVA benchmark suite [21]. The experiments show
that BREACHER triggers more bugs than other state-of-the-art
vulnerability detection tools. The evaluation results on several real-
world programs show that our approach can discover 43% more
unique paths on average than traditional random fuzz testing. Also,
BREACHER exposed several unreported crashes in real-world
programs.

The rest of this paper is organised as follows. Section 2
introduces dynamic symbolic execution and hybrid testing. Section
3 presents the details of how we deal with path explosion caused
by symbolic pointers and loops. Section 4 presents the distance-
based seed selection algorithm. Section 5 describes the
implementation of BREACHER and the evaluation results. Section 6
discusses the limitations of our work and possible further research
topics. Finally, Section 7 reviews related work and Section 8
concludes the paper.
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2 Preliminaries
In this section, we first review the theoretical foundation of
dynamic symbolic execution. Then we provide a simple example in
Fig. 1 to illustrate the concept of hybrid testing based on fuzz
testing and dynamic symbolic execution. 

2.1 Dynamic symbolic execution

Symbolic execution is an analysis method to determine what input
can drive execution to specific code regions [22]. It interprets the
program by assigning symbolic data rather than actual (concrete)
data to the program inputs.

Consider a program P which consists of a set of program
variables Var and a set of instructions Inst. An execution path is a
serial of instructions, such as I0 → I1 → ⋯ → In, where Ii ∈ Inst.
Unlike execution path, which focuses on instructions, a program
state describes current execution state, which holds the value of
each variable (a variable can be represented by either register or
memory). Since the bits of register and memory are bounded, the
number of program state can be enumerated. However, the total
number of execution path may be infinite, which is also known as
‘path explosion’ problem.

Dynamic symbolic execution maintains a symbolic state
S = ⟨I, M, S, pc⟩, where I ∈ Inst denotes the next instruction to be
executed, M is the concrete memory store which maps Var to
concrete data, S is the symbolic memory store which maps Var to
symbolic expressions, and pc is the symbolic path constraint which
is a first-order quantifier free formula over symbolic expressions.
Since each symbolic state can be individually mapped to an
execution path, we can use symbolic state to equivalently represent
an execution path. In the following sections of this paper, all states
denote the symbolic state unless explicitly stated. The ‘path
explosion’ problem can also be expressed as ‘state explosion’.

Under dynamic symbolic execution, program P operates on
both concrete memory M and symbolic memory S by executing
each instruction I ∈ Inst. The semantics for different types of
instructions are listed in Table 1. 

The objective of dynamic symbolic execution is to
systematically explore all feasible paths of program P under the
initial input. Consider an input vector ι which steers program P to

execute a unique finite program trace s0 ⟶I1 s1⋯ ⟶In sn, where
I1⋯In ∈ Inst and s1⋯sn are program states. Then during the
execution of dynamic symbolic execution, different types of
instructions are handled differently according to their semantics. If
Ii is an assignment instruction v := e, dynamic symbolic execution
updates the symbolic memory of v directly with expression e, i.e.
S(v) := e. If Ii is a conditional instruction as defined previously, any
satisfying assignments to the Boolean expression pc ∧ e will lead P
to execute the then branch and any satisfying assignments to
Boolean expression pc ∧ ¬e will steer P to run the else branch.
Dynamic symbolic execution tries to explore both then and else
branches simultaneously by state forking. To fork a new state,
dynamic symbolic execution uses a constraint solver T to generate
solutions both for pc ∧ e and pc ∧ ¬e and updates the path
constraints accordingly. By forking new program state for each
executed conditional instruction, all possible path constraints can
be enumerated and eventually all feasible paths in P can be
exercised. Whenever dynamic symbolic execution executes a
terminate instruction, it terminates the current state and employs
the constraint solver to solve the current pc to generate a
corresponding test input.

Dynamic symbolic execution is affected by the path explosion
problem. Since dynamic symbolic execution may fork a new state
for every conditional branch, the number of states may grow
exponentially in the number of conditional instructions [23]. A
large number of states will quickly exhaust computation resources
and halt testing.

2.2 Hybrid testing

The sample program in Fig. 1 tries to verify the three input
parameters. Hybrid testing starts from a coverage-based fuzzer
which quickly generates an input that satisfies the else branch of
the conditional instruction at line 2. However, verification of
checksum at line 5 would typically prevent the fuzzer from going
any further. When the fuzzer gets stuck, hybrid testing switches to
dynamic symbolic execution engine to get more coverage.

Fig. 2 shows the general architecture of a hybrid testing
approach based on fuzz testing and symbolic execution. The
fuzzing engine performs coverage-based fuzz testing, and shares
the already explored path information with the symbolic execution
engine. This already explored path information can be recorded in
any form. For example, AFL intercepts transitions between basic
blocks as well as the branch-taken hit counts, and stores these
information into a Bitmap. Then each test case in the seed queue
will be sent to symbolic execution engine to disclose more new
paths. Unlike traditional dynamic symbolic execution, the symbolic
execution engine only forks for branches that have not been
previously covered. For example, as shown in Fig. 2, suppose the
red execution trace is the path that the fuzzer will take. In this case,
the symbolic execution engine will only fork new states when it
finds uncovered branches (the blue branches) according to the
shared internal information from the fuzzer. Each forked state will
generate a new test case which can help the fuzzer to reach new
code areas. Based on this hybrid testing method, the verification of
header->checksum at line 5 can be solved by symbolic execution
engine and generate a new test case for further fuzzing. 

However, function path_explosion makes it hard to solve the
conditional instruction at line 9. For example, when using BFS
exploration strategy, this function will quickly saturate the
symbolic state's number budget that used to avoid memory
overhead [9]; DFS exploration works better than BFS in this
example, but it may degrade to exhaustive testing in some cases

Fig. 1  Motivating code for preliminaries. Note that all example code in
this paper is given as source code for readability, but our approach
operates directly on binary programs

 

Table 1 Instructions in dynamic symbolic execution, as well
as their expressions and semantics
Type Expression Semantic
assignment v := e update v with expression e
terminate abort/exit terminate current state
conditional if e then Itrue else I f alse fork current state

 

Fig. 2  Dynamic symbolic execution assisted fuzz testing. The symbolic
execution engine can help generate fresh seeds for the fuzzing engine based
on the seed files and the already explored path information
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(e.g. when path_explosion deals flag as a symbolic pointer).
We will discuss our mitigation for this problem in Section 3.

3 Mitigating path explosion in Symbolic Path
Finder (SPF)
Hybrid testing can help to reduce memory overhead by limiting the
number of states to an acceptable level. However, as mentioned in
Section 1, symbolic pointers and loops will quickly generate lots of
useless states that may not cover new code areas but bring serious
performance overhead.

To address the large number of states forked from symbolic
pointers, we propose a novel LCSP which can not only reduce the
number of states but also improve coverage. For symbolic loops,
we introduce an optimisation based on AFL's loop bucket to
control forking in symbolic loops. By doing this, execution can
reach deeper code areas without generating lots of states. Both
improvements will be discussed in the following sections.

3.1 Lazy concretisation of symbolic pointer

The code snippet in Fig. 3 shows the basic symbolic pointer
problem in dynamic symbolic execution. The first parameter (i.e.
buf) of function looks_ascii points to memory that contains
symbolic input data. The nbytes parameter is a concrete value that
denotes the size of the memory buffer pointed by buf. ubuf is a
shadow buffer which is used for further processing. Function
looks_ascii tries to determine whether each character of the
symbolic input data appears in plain ASCII text, and returns
immediately once a non-plain ASCII text character appears. The
symbolic execution engine faces the symbolic pointer problem
when executing the code at line 18 because buf[i] is from the
symbolic input data. The memory range of text_chars[buf[i]]
spans from &text_chars to &text_chars+255. Since the binary
executable loses the type information, the symbolic execution
engine may need to explore all 256 possible values for each
buf[i] at the worst case. Meanwhile, the loop from line 17 to line
22 makes the trigger of the bug at line 26 even harder since more
states will be forked when nbytes is a larger one. 

There are different approaches for handling path explosion
caused by symbolic pointers. For example, treating memory
address as fully symbolic enables the executor to reason about all
possible values for symbolic pointer [24–27]. This can be achieved
by either forking states or employing nested if-then-else formulas

which encode all possible values. However, since a symbolic
address may point to any memory cell, fully symbolic memory
model fails to scale for real-world binary software. Some
researches leverage the theories of arrays to make fully symbolic
memory model scalable [28, 29]. For example, KLEE [28] forks
states for values that reference different objects, and the theories of
arrays is leveraged within the same object. However, since our
target is to analyse binary executable whose object size of data
structure is unavailable, the number of objects increases because
each possible value may reference to a different object. In contrast
to reason about all possible values, a partial symbolic memory
model has been proposed [15, 30, 31]. The partial symbolic
memory model tries to concretise all symbolic pointer write
operation and treats symbolic pointer read operation using a fully
symbolic memory model when contiguous interval of possible
values is small enough. However, if the possible values span a
large area, partial symbolic memory model still needs to concretise
the symbolic pointer which may lose some soundness paths.

The lazy forking strategy leveraged in S2E was proposed to
avoid maintaining expensive symbolic pointers and ease the large
number of states by forking pending states in concolic execution
[20]. Consider a memory dereference instruction I ∈ Inst in
program P, suppose I tries to access memory indexed by a
symbolic expression eaddr. Lazy forking treats such instruction I as
a conditional instruction and forks new states for I. It first evaluates
the concrete value as caddr, then it constructs an equal expression
condition := EQ(eaddr, caddr) which points eaddr to this concrete
value. Then it forks a new state sp = f ork(s,¬ condition) which is
labelled as a ‘pending state’. After that, each possible value of eaddr
will be exercised by systematically repeating this process. Even
though lazy forking still needs to enumerate all possible values, it
can avoid overhead by significantly reducing the total number of
states that simultaneously exist in system. Here, the condition is
called a hard constraint and ¬condition is called a soft constraint.

For example, for the memory dereference instruction at line 18
in Fig. 3, suppose the concrete value of buf[i] for i ∈ [0, 1, 2, 3]
is ‘A’. In this case lazy forking will fork a new pending state and
add the soft constraint buf[i] ≠ ′A′ to it. Meanwhile, the path
constraint of the original state will be appended with the hard
constraint buf[i] = ′A′. By doing this, the ‘path explosion’ problem
is postponed to a later moment.

However, the hard constraint may reduce the suffix feasible
paths to a very small group. For example, suppose the address of a
symbolic pointer can be expressed as eaddr = f (v1, v2, …, vn), where
v1, v2, …, vn ∈ Var are variables of program P. Then expression
condition := EQ(eaddr, caddr) will limit the current execution path
only feasible when (v1, v2, …, vn) equals to (c1, c2, …, cn), where ci
are the corresponding concrete values. Take the sample code in Fig.
3. The execution path to line 26 will be infeasible because the hard
constraint limits the value of buf[i] (i ∈ [0, 1, 2, 3]) to ‘A’. The
crash can only be triggered after enumerating all possible values
for buf[i] (i ∈ [0, 1, 2, 3]) in the worst case since lazy forking still
belongs to DFS state exploration strategy. So even though lazy
forking can ease the path explosion problem, it may still need to
take longer time to trigger interesting paths. This will result in
performance loss, because the symbolic execution engine may hold
up the fuzzer.

To mitigate this problem, we introduce a novel method LCSP
which is built on top of lazy forking. The detailed algorithm of
LCSP is shown in Algorithm 1 (see Fig. 4). 

Whenever the execution engine touches a symbolic pointer
eaddr, it obtains the range of all possible values ℛ by invoking
function getRange in the constraint solver. Then all memory
values within the range are dissolved into buckets ℬ = ⟨v, addr⟩,
where v is the memory value; addr is the set of memory cell's
address whose memory value is v. After this, we reuse S2E's lazy
forking method to pick up the bucket that contains the concrete
value of this symbolic pointer. For example, when executing the
code at line 18 in Fig. 3, the range of the symbolic pointer is
ℛ = &text_chars + {0, 1, …, 255}. By scanning the memory cells
within ℛ, we can build four buckets, i.e.

Fig. 3  Motivating code derived from file in GNU Coreutils that contains
symbolic pointer dereference at line 18
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ℬ0:{v = F |addr = [0, 1, 2, 3, 4, 5, 6, …] + &text_chars}

ℬ1:{v = T |addr = [7, 8, 9, 10, 12, 13, …] + &text_chars}

ℬ2:{v = I |addr = [160, 161, …, 254, 255] + &text_chars}

ℬ3:{v = X |addr = [128, 129, 130, …, 159] + &text_chars}

Since eaddr’s concrete value belongs to ℬ1, we then introduce a
new symbolic variable vp into the engine and update current path
constraint by adding expanded hard constraint condition to it.
Condition is described as Pv ∩ Pp, where

Pv = {vp == T};

Pp = {eaddr == 0x41 + &text_chars} .

During the following execution, all path conditions that related to
the newly introduced symbolic variable vp will be collected as
pointer dereference constraint Cpd. This constraint is used to keep
execution consistency.

When performing lazy forking, all the states whose path
constraints contain the soft constraints will be collected into
Pending States as well as the buckets. These pending states are
grouped by the program variables (e.g. each byte in an input file)
that affect the corresponding soft constraint. They are also ordered
along with the execution trace. Then when the dynamic symbolic
execution engine detects an infeasible branch due to hard
constraints from symbolic pointer (lines 1–3), the branch condition
CF will be investigated to extract the program variables offs (line
4).

Since we have introduced new symbolic variable when
dereferencing a symbolic pointer, we need to make sure all
conditions in Cpd are satisfied so that the generated test case can
keep execution consistency. Line 14 collects all satisfied buckets
into ℬsat. The collect procedure is light-weight since
getSATBuckets only needs to evaluate Cpd under each bucket's
key (i.e. ℬ . v). For each satisfied bucket, real solutions for current
eaddr are sieved out (lines 16–27). This is achieved by evaluating
each addr in ℬsat (lines 21 and 22). All Cnew evaluated as True will
be collected together (lines 23–25). The ∪ in line 24 compacts
consecutive addrs into a range expression. For example,
{eaddr == 4}, {eaddr == 5}, and {eaddr == 6} will be transformed to
{4 <= eaddr <= 6}.

By analysing all pending states that related to o f f f ork, the final
extra condition extraCond is constructed (line 28). After this, we
remove the hard constraints CH (related to o f f f ork) and Cpd from a
newly cloned state stmp from current state and append the final
extra condition to it (lines 31–33). The reason why Cpd is stripped
is because it is already satisfied at line 14. After appending all
related conditions, the dynamic symbolic execution engine will try
to generate a new test case (line 34), and once the generation
successes, the test case tlsp will be sent to the fuzzer to find more
paths.

For the code snippet in Fig. 3, suppose nbytes is 5. Then when
dynamic symbolic execution reaches line 24, there will be six
states in the system: one execution state S0 and five pending states
(P0, P1, P2, P3, and P4). Pi is forked when dereferencing buf[i] at
line 18. The pointer dereference constraint Cpd is
{(v0 == T) ∩ (v1 == T) ∩ (v2 == T) ∩ (v3 == T) ∩ (v4 == T)},
where vi is introduced for each symbolic pointer dereference at line
18; SCH is {CH0 ∩ CH1 ∩ CH2 ∩ CH3 ∩ CH4}, where CHi is
{vi == T ∩ buf[i] == ′A′}. Here, buf[i]==‘A’ is derived from
{text_chars + buf[i] == text_chars + ′A′}Due to the hard
constraint, the four condition instructions at line 24 are infeasible.
We pick up the first failed condition CF = {ubuf[0] == ′D′} to
explain how LCSP works in detail.

The fork failure raises because line 18 introduces
buf[0] = =′ A′ in CH1, which conflicts with condition

ubuf[0]==‘D’. According to Algorithm 1 (Fig. 4), LCSP first
checks the input offset that results in this infeasible condition and
deals all pending states related to this offset. Based on this, only P0
is chosen to break ubuf[0]==‘D’, and the corresponding CH and
eaddr in Algorithm 1 (Fig. 4) are CH1 and text_chars+buf[0],
respectively.

Then all satisfied buckets of P0 are sieved out by evaluating the
pointer dereference constraint Cpd. There are four buckets for P0 as
mentioned before, i.e. ℬ0, ℬ1, ℬ2, and ℬ3, whose memory value v
are ℬ0 ⋅ v = F, ℬ1 ⋅ v = T , ℬ2 ⋅ v = I, and ℬ3 ⋅ v = X,
respectively. After evaluating all these four buckets, ℬsat is {ℬ1}
since Cpd is only satisfied when v0 = ℬ1 ⋅ v = T .

After this, Algorithm 1 (Fig. 4) evaluates each addr in ℬ1 to
build the final extra condition (lines 16–27). The final constructed
extra condition extraCond in this example is
{eaddr == &text_chars +′ D′}. This extraCond keeps not only CF
but also Cpd be satisfied. Then LCSP fixes current path condition
by stripping unrelated conditions and adding
{eaddr == &text_chars +′ D′} to it, where eaddr is &text_chars
+buf[0].

At last, LCSP invokes the constraint solver to generate a fresh
test case. Here, after breaking condition ubuf[0]==′D′, the
generated test case tlsp is DAAAA. This test case will be sent to the
fuzzer and the remained three conditions at line 24 will be solved
in the same way. Thus, based on this algorithm, we can generate at
least one fresh test case that satisfies the branch condition
whenever a branch is infeasible because of lazy forking.

Fig. 4  Algorithm 1: Lazy concretisation of symbolic pointer
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3.2 Optimisation for symbolic loop

Symbolic loop, whose loop control variable depends on symbolic
data, is another common cause of path explosion since its loop
times may range from 0 to infinite theoretically. Even though the
hybrid testing method can ease path explosion, the states forked
from a symbolic loop will quickly force the number of states to
increase to the budget's upper bound.

The code snippet in Fig. 5 demonstrates this problem. Function
verify_packet reads the length of the raw data from the packet
at line 4. Then from lines 6 to 10, it investigates each bytes in the
raw data to determine whether there exists the ending descriptor
(i.e. 0xFF) through a loop structure. Suppose we have a test case
from the seed queue of the fuzzer and its length is 0xAA, then the
symbolic loop from lines 6 to 10 (length is symbolic) will result
in path explosion. As the possible value of length is in the range
of [0, 232 − 1], 232 states will be forked from line 6 in the worst
case. Most of the forked states from line 6 may not contribute to
any new code coverage but only bring performance overhead. It is
therefore important to also handle symbolic loops. 

AEG [32] proposes loop exhaustion search strategy to handle
symbolic loops. It tries to execute the loop as many times as
possible. Since it focuses only on maximising the loop iterations
which may fork lots of states, it thus may stuck the fuzzer from
exploring more paths in our hybrid testing framework.

A boundary state prioritisation method has been proposed
recently to ease the path explosion problem due to symbolic loops.
The key idea of this prioritisation is to defer the analysis of
uninteresting states based on the likelihood of a security
vulnerability [33]. Specifically, it focuses only on three types of
states for a symbolic loop: no loop execution, single loop
execution, and the largest number of loop executions. The author
implemented such a strategy within S2E [20] and produced a
vulnerability detection tool CAB-Fuzz. It successfully found 21

undisclosed unique crashes in Windows 7 and Windows Server
2008 [33].

We extend this boundary state prioritisation method by
integrating it with the Loop Bucket mechanism employed in AFL
[10] to achieve better performance on finding vulnerabilities. AFL
utilises Loop Bucket to avoid collecting too many test cases which
only affect the loop times into the seed queue [10]. It groups the
loop times into eight different buckets, i.e. [1, 2, 3, 4–7, 8–15, 16–
31, 32–127, 128+]. Only changes that occur between different
buckets will be regarded as new behaviours. Based on this idea, we
proposed a symbolic loop bucket (SLB) to handle the symbolic
loop when performing hybrid testing. The algorithm of SLB is
described in Algorithm 2 (see Fig. 6). 

Loops are extracted from the target program by static analysis.
These loops will be configured in the dynamic symbolic execution
engine to help it recognise loops in runtime. All the symbolic loops
can be distinguished from the others by checking whether the loop
exit condition is affected by symbolic data or not (lines 1–3). For
the edge belongs to symbolic loop, the uncovered loop buckets for
this loop will be obtained by analysing the Bitmap mentioned
before (line 5). In already covered loop buckets, the program will
loop for one more time without forking new state (lines 16 and 17).
Once an uncovered bucket is reached, the corresponding test case
will be generated and then this uncovered bucket will be removed
from the uncovered loop buckets to avoid generating multiple test
cases (lines 7–12). After generating test cases for all the uncovered
buckets, the loop will be prohibited from being executed for more
times. This can make sure that all the loop buckets will be covered
without causing path explosion.

The symbolic loop is presented in Fig. 5. Suppose previous test
cases have covered the buckets of [1], [2], [3], and [4–7]. Then
UBs at line 5 in Algorithm 2 (Fig. 6) will consist of [8–15], [16–
31], [32–127], and [128 + ]. loopTimes = [1, 2, …, 7] will not fork
any new states according to line 15 to 18. Then once the loopTimes
reaches 8 which belongs to an uncovered bucket [8–15], the engine
forks a new state, generates the corresponding the test case, and
removes bucket [8–15] from UBs. The execution engines will not
fork new states until loopTimes reaches 16, 32, and 128. Once all
the loop buckets are covered, the forking in this symbolic loop will
be disabled. It will continue cycling until loopTimes reaches the
concrete value of length (i.e. 0xAA) and then exercise deeper code
areas.

4 Distance-based seed selection
As previously discussed, the size of the fuzzer's seed queue will
quickly reach a large number (especially with the assistance of
dynamic symbolic execution) when testing large-scale modern
software. The seed queue should therefore be rearranged to find
more paths in a given time budget.

We realised that different seed files in the queue have different
effects on path discovery. For example in Fig. 7, suppose each
input that triggers new behaviour will be mapped to a specific dot.
The fuzzer starts from an initial seed which is marked as red in this
figure. The mutation results of this initial seed cover the black
points as well as seed A and seed B. Then, in evolutionary fuzz
testing, a test case will be picked up as the seed file for next round
of mutation. Consider the choice between seed A and B in this
figure. The distance (e.g. Euclidean distance) from the initial seed
file to A is much shorter than B. This means that A is more similar
to the initial seed file than B. So choosing A as the next seed file to
mutate will only trigger two new paths (the blue area) as most of
the mutated test cases are overlapped by what the initial seed has
mutated (the grey area). However, because seed B has a longer
distance from the initial seed than seed A, the coverage area of B
(the brown area) will have less overlap by that of initial seed file
than A. So choosing seed B will trigger more new behaviours than
selecting seed A. 

Based on this insight, we propose a seed selection method for
the fuzzer based on the distance between test cases. Our method
first maps each seed in the queue as a numerical vector. Then each
seed is assigned with a weight value according to the distance from
other test cases and its runtime information, which is then utilised

Fig. 5  Motivating example to demonstrate path explosion raised by
symbolic loops

 

Fig. 6  Algorithm 2: Symbolic loop bucket
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as the criteria to determine how many times a seed should be
mutated. We investigate three popular distance measures, i.e.
Euclidean distance, cosine similarity, and Jaccard index, as the
distance metrics for calculating the weight value for each seed.

In order to measure the distances, all test cases should be
mapped as numerical vectors. The mapping can be performed into
either the input space or state space. Mapping into the input space
cannot reflect the real relationship between test cases when
considering the behaviour of the target program. As shown in Fig.
8, multiple different inputs can steer the program to execute the
same path. For example, considering the three test cases namely
A.jpeg, B.jpeg, and C.jpeg in this figure, suppose the
corresponding contents are shown as follows:

A.jpeg: \xFF\xD8\xAA\xBB\xCC\xDD
B.jpeg: \xFF\xD8\xDD\xCC\xBB\xAA
C.jpeg: \xFE\xD8\xAA\xBB\xCC\xDD

If we calculate the Euclidean distance between these three files
directly in the input space, EDAB will be greater than EDAC because
there are more different bytes between A.jpeg and B.jpeg than that
of A.jpeg and C.jpeg. This means A.jpeg and C.jpeg are more
similar (as shown in Fig. 8) from the viewpoint of input space.
However, for most of JPEG process programs, A.jpeg and
B.jpeg will execute the same path, and C.jpeg will execute
another path because C.jpeg is an illegal JPEG file (bad magic
number). So from the viewpoint of the program, A.jpeg and
B.jpeg are more similar than A.jpeg and C.jpeg even though
A.jpeg and C.jpeg have only one bit difference. Since our
objective is to maximise the coverage in the state space, we choose
to map all the test cases as numeric vectors in the state space to
calculate the distance. 

In [34], all test cases are represented as a branch coverage
vector V = (v1, v2, …, vN), where vi is 0 means the branch is
covered, otherwise 1. However, different test cases can affect
different number of branches, so the mapped vectors may have
different lengths which cannot be used directly for distance
calculation. Meanwhile, it will be difficult to construct such vectors
because obtaining all the branches and listing them orderly in each
vector to avoid obfuscation between vectors is nearly impossible
for binary programs. In AFL [10], the execution path information
of each test case is stored as a Bitmap. By checking the hit count of

this bitmap, AFL determines whether some new behaviours are
triggered. So as this bitmap contains enough information to reflect
the characteristics of a test case from the viewpoint of the state
space, we choose the bitmap as our mapped vector to mitigate the
costly mapping in [34].

Based on the mapped bitmap vectors, the test case queue in the
fuzzer is enhanced by assigning each test case with weight W,
where W is obtained by calculating the distance between every two
test cases. Whenever a new seed file is found, the distance between
this seed file and all the other files in the queue will be measured to
calculate W. Meanwhile, the weight of all the other files in the
queue will be updated according to the distance to the new seed
file.

Rather than selecting the seed file that has the longest distance
to the current seed file (which is only a local optimum solution),
our search method selects the file that takes the longest average
distance from all the other test cases as the next seed file. By doing
this, we can achieve a global optimum solution for this searching
problem. The weight W for test case tk is defined as follows:

Wk = 1
N ∑

i = 0

N
D(ti, tk)

where D(ti, tk) denotes the distance between ti and tk based on the
three distance measures mentioned before, and N is the size of the
test case queue.

We also noticed that even though two test cases have the same
W value, they may have different power on finding new paths. This
is because path coverage is not the only criteria for testing, and
other runtime information, such as memory operations, can also be
leveraged to prioritise test cases. So we enhanced the weigh W with
memory coverage to achieve better prioritisation result. The
enhanced weight W^

k for test case tk is defined as the following
formula, where M(tk) denotes the number of memory cells that tk
covers in byte

W^
k = M(tk) + 1

N ∑
i = 0

N
D(ti, tk)

AFL introduces Energy (i.e. mutation times) for each seed based on
some properties like bitmap coverage, file size, execution time, and
so on. For example, a seed with more bitmap coverage will be
fuzzed with more times. We leveraged the similar idea in our
distance-based seed selection. Based on the enhanced weight, our
fuzzer engine assigns each seed with an extra energy to mutation.
That is, a seed in the queue with greater weight will be fuzzed with
more times. By assigning more mutation times for the seed that
may cover more untouched code areas, we increase the probability
to trigger more paths.

5 Implementation and evaluation
BREACHER is built on top of AFL [10], a popular state-of-the-art
genetic fuzzing framework, and the S2E symbolic execution
platform [20]. S2E is a dynamic binary analysis platform which
utilises selective symbolic execution to analyse whole software
stacks at runtime. S2E reuses parts of the QEMU virtual machine
[35], the KLEE symbolic execution engine [28], and the LLVM
toolchains [36].

Our implementation consists of two main components, namely
SPF and Seacher. The SPF component is leveraged to help the
fuzzer dive into deeper code areas that are guarded by complex
path constraints. Techniques to handle the path explosion problem
raised by symbolic pointers and loops are implemented inside of
SPF. The Searcher is designed to assign more mutation energy to
the promising seeds based on the weight value obtained by
distance-based seed selection method. By doing this, the fuzzer
will reach previously untouched more code areas as soon as
possible in a given time budget.

In the experimental evaluation part, we address the following
research questions:

Fig. 7  Motivating example to demonstrate how seed selection affects the
testing efficiency

 

Fig. 8  Illusion for distance. The distance from A to B is longer than from A
to C in input space, which is opposite in state space because A and B will
execute the same path (the red one)
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• RQ1: Can BREACHER discover more deeper bugs?
• RQ2: Can distance-based seed selection method improve

performance of path discovery?
• RQ3: How does each component contribute to path discovery?
• RQ4: Did BREACHER uncover unreported bugs in real-world

binaries?

More specifically, RQ1 investigates the bug discovery ability of
BREACHER on two benchmarks and compares the results with other
vulnerability detection tools including fuzz testing and symbolic
execution. For RQ2 and RQ3, we choose to use AFL's unique
paths as performance evaluation criterion since it is a key factor to
reflect the performance of a path-based program testing tool. RQ2
evaluates distance-based seed selection on several real-world
programs to see whether our method can discover more unique
paths than the state-of-the-art fuzzer: AFL. RQ3 evaluates the
overall unique path discovery performance of BREACHER and
investigates the performance contribution of each isolated
component (i.e. SPF and Searcher). RQ4 benchmarks BREACHER
on several real-world programs to check whether it can discover
unreported crashes.

Evaluations were conducted on a server equipped with an Intel
Xeon CPU E7-2850@2.0 GHz with 10 cores and 64 GB RAM,
running Linux Ubuntu 14.04 LTS AMD64.

5.1 Vulnerability detection (RQ1)

We evaluated the bug discovery ability of our method with two
different benchmarks. The first benchmark is a demo program
which is named as CommonMB. The second benchmark is LAVA,
which was released in 2016 to test different vulnerability discovery
tools [21]. In the following sections, we are going to introduce the
two benchmarks, and discuss the testing results of BREACHER as
well as other off-the-shelf vulnerability discovery tools (AFL,
VUzzer, KLEE, and S2E) in detail. AFL and VUzzer are coverage-
based fuzzers. VUzzer leverages static analysis to extract
comparison instructions, and then introduces these information into
mutation to improve coverage [8]. By doing such, VUzzer is good
at uncovering magic number related bugs. KLEE and S2E are both
symbolic execution tools. However, KLEE works in user mode and
can only handle compiled LLVM byte code. S2E can deal directly
with binary executables on full software stack.

5.1.1 CommonMB: The CommonMB benchmark is a demo
program which contains nine different memory error bugs. These
bugs can be triggered only when feeding the program with
specifically crafted input. There are four different kinds of
functions in this benchmark, i.e. two compare-style functions, three
math-style functions, two checksum-style functions, and two logic-
style functions. The compare functions contain bugs that can only
be triggered when the values of specific parts of the input equal to
specific constant immediate numbers; the bugs in math functions
can be triggered when the results of math operation on some
specific parts of the input equal to specific constant immediate
numbers; the checksum related bugs can only be triggered when
the input data successfully goes through the checksum checking
points; and the logic bugs utilise two simple logical games (maze
and semi-sudoku) as the constraints for triggering the bugs, which
means the bugs can only be triggered when the testing engine
successfully solves the games. We released CommonMB
benchmark on https://github.com/Epeius/CommonMB.git.

The bugs in CommonMB benchmark represent the common bug
conditions in real-world programs. For example, compare-style
bugs denote the bugs that depend on some specific/interesting
values in the program; checksum-style bugs stands for the bugs
whose inputs are well-formatted, such as PNG file. So evaluating a
vulnerability detection tool on such a benchmark can reflect its
ability of discovering bugs in real-world programs.

Table 2 shows the overall results of different vulnerability
discovery tools as well as BREACHER with same test environment
(10 cores and 12 h). We can see that all these tools have
successfully triggered the two compare-style bugs (i.e. cmp16 and
cmp32). This is because there two functions are in the shallow
surface of this benchmark and the conditions to trigger the bugs are
simpler than the others. 

Fuzz testing tool discovered few math-bugs than symbolic
execution tools. AFL discovered only one bug in MATH (i.e.
add16). It failed to uncover the bug that guarded by complex
mathematic operations. VUzzer failed to detect any bugs in MATH.
All tools that leverage symbolic execution successfully triggered
all these three bugs since symbolic execution is good at solving
such corner cases.

S2E provides function models for basic functions that may fork
too many states, like strcpy, strcat, crc16, and crc32. Based
on these models, S2E and BREACHER discovered the two bugs that
related to checksum successfully (note that this does not mean S2E
can break these checksum functions). Such bugs cannot be
uncovered by KLEE.

Logic-style vulnerabilities are difficult for all tools to uncover
because the number of states will be infinite in the worse case. For
example, when solving a maze, the possible oscillation between
two opposite steps (such as step forward and step backward) will
stop the engine from finding new paths. With the help of our seed
selection method, BREACHER assigned the seed file with the
maximum average distance with more energy to mutate. Since this
distance metric tries to maximise the memory coverage, BREACHER
successfully triggered the bug after covering all the memory access
to the maze array. However, our BREACHER failed to trigger the bug
in sudoku. This is because different seed files of the sudoku have
no significant differences (i.e. no more code/branch and memory
coverage), which confuses our seed selection method.

Table 2 also presents the peak memory usage (PMU) of these
tools in kB. From these data, we can see that BREACHER consumes
more memory than other four tools, specifically, it brings memory
overhead when compared with vanilla S2E. This is because we run
both fuzzer and symbolic execution in the system. Since
BREACHER's symbolic execution engine works on hybrid testing
mode which only forks states for only uncovered branches of the
seed from fuzzer, it brings less memory overhead (1.8% more).

5.1.2 LAVA benchmark: In 2016, Dolan-Gavitt et al. [21]
developed a technique, namely LAVA, to automatically inject
secure-related bugs into some Linux utilities for evaluating the
bug-finding tools. These bugs are all hard-to-reach memory errors.
In the paper of LAVA, the authors describe their results on the
evaluation of coverage-based fuzz testing, an SAT-based approach
on the benchmark. The LAVA benchmark has two corpus sets, i.e.
LAVA-1 and LAVA-M.

LAVA-1 injected 69 different bugs into the file program in
Linux CoreUtils. Two types of buffer overflow vulnerabilities were
injected, one is Range and the other one is Knob-and-trigger (KT).
The Range style bugs are triggered if the magic value is in some
range and also check the value to determine how much to overflow.

Table 2 Evaluation results on CommonMB in detail
Tool CMP MATH CHECKSUM LOGIC Total crashes (#) PMU, kB

version cmp16 cmp32 add16 add32 complex crc16 crc32 maze sudoku
AFL 2.52b ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 3 4588.0
VUzzer 1.0 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 3 25,702.4
KLEE (Random Searcher) 1.4.0 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 5 108,236.8
S2E 2.0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 7 2,979,048.0
BREACHER 0.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 8 3,031,373.2
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In the KT bug, two bytes in the input are checked against a magic
value to determine if the overflow will happen and another two
bytes determine how much to overflow. Both the two types of bugs
were designed to mirror real bug patterns which can be used to
evaluate the ability of bug-finding tools. Compared to LAVA-1,
which injected only one bug in the program, LAVA-M injected
more than one bug into four different programs in CoreUtils that
took file input: base64, md5sum, uniq, and who, so LAVA-M is a
better benchmark to evaluate the vulnerability discovery tools that
are designed to work for a long time on programs that may contain
multiple bugs.

Note that since [21] does not make a statement about the details
of about the tools and experimental setups they evaluated, we took
their results directly into Tables 3 and 4. Also, because VUzzer
runs only on 32-bit system, we re-executed VUzzer within a new
environment running Linux Ubuntu 14.04 X86 with the same cores
and memory as our experimental setup. Meanwhile, since VUzzer
works on binary mode as well as S2E, we discard to evaluate
KLEE on LAVA benchmark. 

We also list BREACHER with different setups in Tables 3 and 4.
Here BREACHER* represents BREACHER with only Searcher
disabled, where E, C, J denote Euclidean distance, cosine
similarity, and Jaccard index metrics.

Table 3 summarised the results of bug finding evaluation on
LAVA-1 from the LAVA paper as well as some popular off-the-shelf
tools. The maximum testing time for each bug was 5 h. From this
table, we can see that the FUZZER and SES mentioned in the paper
only found 23 bugs and 6 bugs, respectively, in total. AFL failed to
trigger any bugs in smaller ranges (20, 27, and 214) but it
outperformed VUzzer and S2E in larger ranges. VUzzer touched a
total of three bugs which is less than AFL. This is because
VUzzer's dynamic taint analysis (DTA) slowed down the testing
speed but gained little in LAVA-1 since the conditions of triggering
such bugs are not in strictly equality comparison form.

An interesting point is that S2E failed to trigger any bugs in
LAVA-1. The reason is that because LAVA-1 is built on top of
file program which contains many lookup tables by symbolic
index, and such code will degrade symbolic execution to random-
like fuzz testing (as shown in Fig. 3). Meanwhile, since S2E works
on full system emulation mode and the execution speed is much

less than fuzz testing in user mode like AFL, it failed to uncover
bugs even in larger areas.

BREACHER discovered 62 bugs which was much more than the
FUZZER and the SES tools separately. In particular, we triggered
all the bugs in 27 and 214 ranges. Also found most of the KT bugs
(70%) which cannot be touched effectively by the FUZZER and
SES tools. By leveraging LCSP algorithm, BREACHER's symbolic
execution engine can go through the lookup tables to reach the bug
points, and since the bugs’ trigger conditions in LAVA-1 are easy
for symbolic execution engine, BREACHER thus can uncover almost
all the bugs in LAVA-1.

We can also derive from Table 3 that the gain of BREACHER in
LAVA-1 mostly comes from SPF (BREACHER* has the similar
performance with AFL), especially in smaller ranges like 20, 27,
and 214. This is because, even though the fuzzer engine can steer
file program to the bug point, the trigger conditions are complex
for BREACHER* to overcome.

Table 4 describes the evaluation results on LAVA-M of the
FUZZER and SES which are mentioned in the LAVA paper. We
also listed other popular tools and BREACHER in this table. From
this table we can see BREACHER outperformed other tools on this
benchmark.

As mentioned in the LAVA paper, SES cannot find any bugs in
uniq and md5sum. The reasons are the control flow is too
unconstrained in uniq and SES failed to execute any code past the
first instance of the hash function. VUzzer outperformed AFL in
base64, uniq, and who, but it failed to trigger more bugs than
AFL in md5sum. This is because it failed to get through the first
crash to parse more of any input [8], whereas BREACHER
successfully triggered 29 bugs in md5sum.

Similar to LAVA-1, the bug points in LAVA-M are also easy-to-
reach. This is why BREACHER* bring little performance
improvement when compared with AFL. However, since SPF
leverages symbolic execution to solve the bug conditions, more
bugs are exposed.

Since the role of the fuzzer (specifically, Searcher) in hybrid
testing is to find as many code areas as possible, we devised more
experiments to illustrate the coverage performance of distance-
based seed selection method in Sections 5.2 and 5.3.

Table 3 Evaluation results on LAVA-1
20 27 214 221 228 KT

Tool 12 bugs 10 bugs 11 bugs 14 bugs 12 bugs 10 bugs
FUZZER 0 0 1 11 9 2
SES 1 0 1 3 0 1
AFL 0 0 0 10 9 1
VUzzer 0 0 0 2 1 0
S2E 0 0 0 0 0 0
BREACHERE 0 0 0 10 8 0
BREACHERC 0 0 0 9 9 0
BREACHERJ 0 0 0 9 8 1
BREACHER 10 10 11 13 11 7

 

Table 4 Evaluation results on LAVA-M
base64 md5sum uniq who

Tool (44 bugs) (57 bugs) (28 bugs) (2136 bugs) Total
FUZZER 7 2 7 0 16
SES 9 0 0 18 27
AFL 2 6 1 3 12
VUzzer 14 1* 24 103 142
S2E 1 0 0 2 4
BREACHERE 1 6 1 4 12
BREACHERC 2 4 1 4 11
BREACHERJ 1 4 1 3 9
BREACHER 37 29 28 203 297
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5.2 Coverage performance (RQ2)

Our benchmark for coverage performance evaluation consists of
eight real-world binary programs, and the input file formats of our
benchmark cover a range of types such as executables, images,
archives, and network packets.

To set the baseline of coverage performance, we utilised the
state-of-the-art coverage-based fuzzer AFL [10] and configured it
to run under binary-testing (i.e. option ‘-Q’ is turned on) mode
with one single work node. We collected and compared the number
of unique paths found by AFL and our distance-based seed
selection method. Then we select the most effective distance metric
for subsection 5.3. All the evaluations lasted for 24 h.

The evaluation results were shown in Table 5. We have
investigated the three distance measures mentioned before (i.e. EU,
CS, and JI) as well as vanilla AFL (Order). From this table, we can

see that by assigning more mutation energy to promising seeds, the
fuzzer can touch more unique paths in average. More clearly, Fig.
9a shows the normalised unique paths to vanilla AFL for these
eight programs based on the results in Table 5. 

From Fig. 9a, we can see that both EU and CS metrics can
outperform vanilla AFL on discovering unique paths for all
programs in our benchmark. However, the average performance
gain of EU is lowers than CS metric. Compared with the other two
distance measures, JI is the most unstable strategy which discover
more unique paths for some programs, like readelf, djpeg, but
also brings performance overhead for some others, such as
tcpdump.

An interesting point from Fig. 9a is that, for capstone, the
performance gain of CS metric is not as significant as the other
seven programs (found only 8% more paths than vanilla AFL).
This is because, in our experiment, the input of captone was only
plain texture file with some assembly code in it. Such kind of input
is not as well formatted as other inputs like ELF, JPEG, CAP, and
so on. So modifying any parts of the input may have same
probability to trigger new behaviours which means each seed file
in the queue will have nearly the same power to cover new code
areas. This also demonstrates that our seed prioritisation method
will gain more performance for well-formatted inputs.

To demonstrate the path discovery speed along with test time,
we selected four representative programs, i.e., readelf, ffmpeg,
objdump, and tcpdump, in our benchmark and collected the
number of unique paths every 2 h (the number for each program is
normalised to the maximum to make this figure more clear). The
results are shown in Fig. 9b, where the x-axis indicates the test time
in hours; while the y-axis shows the normalised unique number of
paths triggered by each strategy. As shown in Fig. 9b, both CS and
EU performed consistently better than orderly during all the 24 h.
More specifically, EU performed better than CS in the first several
hours, and then CS outperformed EU in the following test time.
While JI performed well in readelf, ffmpeg, and objdump, but it
failed to improve the performance in tcpdump after testing for 8 h.

Especially for ffmpeg, we can see that in the first 4 h, all of
these four selection strategies achieved the same performance on
discovering unique paths. However, vanilla AFL failed to trigger
more unique paths during 4–18 h before it started to find new paths
again. This is because the mutation areas of seeds that processed
during 4–18 h are overlapped with each other (as shown in Fig. 7),
which will not contribute any new paths. However, our distance-
based seed selection strategy can consistently trigger new paths
during 24 h as shown in this figure.

Based on the results, we can obtain that our distance-based seed
selection strategy (especially CS metric) can achieve higher
performance than vanilla AFL. So we selected CS metric as our
selection strategy in the following evaluation section.

5.3 Improvement detail for each component (RQ3)

In order to evaluate the contribution of each component on finding
unique paths, we conducted four experiments [i.e. vanilla AFL fuzz
testing, symbolic execution assisted hybrid testing (SEHT), SEHT
with SPF, SEHT with SPF&Searcher] and compared their results
in 24 h.

In our experiments, since Driller [9] does not support real-world
binary programs very well now (many library functions and system
calls are not modelled), we reimplemented the mechanism of
Driller within S2E to collect the results for SEHT. Based on the
results of Section 5.2, our searcher employs cosine similarity as the
distance metric.

Fig. 10 summarises the results of how each component
contributes to the performance improvement. Compared with
vanilla fuzz testing, SEHT can discover 11.88% more unique paths
in average. For example, this improvement reaches the highest
figure of 42.79% for readelf. However, the performance gain is
lower than 20% for the other seven programs. Specifically, SEHT
triggered only 1.32% more unique paths than vanilla fuzz testing
for gif2png. This is because the symbolic execution engine does
not support to handle float number operation. After employing SPF
which handles symbolic pointers and symbolic loops, 7.22% more

Table 5 Number of unique paths discovered for eight
sample programs
Program Order# EU# CS# JI#
readelf 2753 4595 5314 5062
djpeg 2802 3020 4198 3390
objdump 1755 2200 2960 2133
gzip 1440 1564 1754 1588
ffmpeg 5022 5993 6181 5801
tcpdump 3399 3673 4267 2950
capstone 5626 6008 6066 5873
gif2png 912 981 1100 997

 

Fig. 9  Path discovery results for different seed selection strategies
(a) Normalised number of unique paths for these four selection strategies to vanilla
fuzz testing (i.e. Order), (b) Path discovery details along with 24 h for four sample
programs
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unique paths touched by SEHT with SPF than SEHT in average.
We can see from this figure that the performance of SEHT is highly
improved by SPF for readelf and objdump (18.02 and 22.62%,
respectively). 

This improvement can be continually augmented by
cooperating with CS searcher (SEHT with SPF and CS Searcher).
For example, the number of unique paths discovered by SEHT is
increased by 49.57% for objdump. In average, the performance of
SEHT is improved by 24.44% after introducing SPF and CS
Searcher. From an overall viewpoint, BREACHER can discover
43.49% more unique paths than vanilla AFL fuzz testing for our
benchmark. This improvement is because that seeds files with
longest distance from already-explored spaces have higher
likelihood to trigger more fresh branches/paths, so solving such
seed files earlier by symbolic execution can find more fresh seed
files than other files.

Above all, we can obtain that Searcher contributes larger
proportion of contribution to unique path discovery than SPF.
However, this does not mean the contribution of SPF is negligible.
By integrating SPF component (i.e. LCSP and SLB), the symbolic
execution engine can dive into deeper code areas to solve complex
branch conditions to help fuzzer find more fresh paths and
discover more hard-to-reach vulnerabilities (as shown in Section
5.1).

5.4 Unknown crashes discovered in real-world binaries
(RQ4)

We selected several real-world programs to evaluate the ability of
unknown bug discovery of our system. The input types of this
dataset cover ELF binary, multi-media, image, and packet capture.
In order to demonstrate the efficiency of our system, we also
compared our results with AFL and VUzzer. We ran each program
under the same testing environment with one fuzzing node for 24 
h.

Table 6 shows the results of our testing. From the table we can
see that during 24 h, BREACHER triggered 403 unique crashes in the
dataset which outperformed vanilla AFL (181 unique crashes) and
VUzzer (192 unique crashes). We can also derive from this table
that our method gains little for mp3gain and madplay. This is

because our symbolic execution engine does not support the float
number operation when handing MPEG/WAV format (e.g. all the
writing operation to XMM registers will be concretised). This
concretisation lost some interesting paths and made less
contribution to bug finding (only two more bugs for mp3gain and
one more bug for madplay). This also explains why VUzzer found
more bugs in mp3gain than BREACHER. It is interesting that AFL
detected 15 more bugs in elfparser than VUzzer. This is because
the fork server method leveraged in AFL enables the fuzzer can
execute 51.6x more test cases than VUzzer in the same time, which
can also increase the probability of finding bugs. 

6 Limitations and discussion
Our method is built on top of coverage-based fuzz testing and
dynamic symbolic execution, where we have introduced distance-
based seed search strategy, SLB, and lazy symbolic pointer. While
an improvement, there are still some drawbacks to our method.
This section discusses these limitations and takes a future look at
the vulnerability discovery.

6.1 Limitations

Distance measurement: Our seed selection strategy leverages three
well-known distance measures, i.e. Euclidean distance, cosine
similarity, and Jaccard index. Also, we have evaluated these three
measures and compared the results with no search strategy. In the
future, we hope to investigate other distance metrics (e.g. hamming
distance, N-gram distance etc.) to find a better measurement for
different execution paths (or different seed inputs).

Plain input format: Programs that accept input with no specific
format cannot gain performance improvement from our distance-
based seed selection method. As shown in Fig. 9a, all of these three
distance-based selection strategies failed to trigger more new
behaviours for capstone which accepts the plain texture file as
input.

Float point operation: The dynamic symbolic execution engine
we depend on will concretise symbolic write operations to XMM
registers, which will lose some interesting paths when handling
float point arithmetic operations. For example, the Floating-point

Fig. 10  Normalised number of unique paths discovered for each component to vanilla fuzz testing
 

Table 6 Performance of our method versus AFL and VUzzer on unknown crashes
Program Input Type BREACHER AFL VUzzer

Crashes (#) Executed (#) Crashes (#) Executed (#) Crashes (#) Executed (#)
elfparser ELF 60 1.1M 48 1.0M 33 19.0k
distorm ELF 13 16.2M 0 15.7M 3 93.1k
mp3gain* MPEG 43 11.3M 41 11.7M 46 79.3k
madplay* WAV 55 15.9M 54 14.3M 52 88.7k
optipng PNG 49 9.5M 15 10.1M 32 54.1k
tstat PCAP 183 6.4M 23 6.2M 26 48.5k
total 403 181 192
Star symbol means that Breacher failed to uncover more paths in these two programs since our symbolic execution engine does not support float point number operations.
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Number benchmark in [37] makes an obstacle for KLEE to solve.
This problem also happens for most of the image processing
programs. So the dynamic symbolic execution engine should be
upgraded to support float point arithmetic operations to handle
these types of programs.

6.2 Future work on vulnerability detection

This section will briefly propose some possible future research
areas in vulnerability detection.

6.2.1 Binary transformations: Dynamic symbolic execution still
faces scalability problem when considering the size and complexity
of modern software. Compiler optimisations can have a large
impact on dynamic symbolic execution's effectiveness. In 2013, J.
Wagner et al. proposed a new compiler option -OVERIFY to
generate code optimised specifically for verification tools. Their
experiments’ results show that -Overify can reduce verification
time by up to 95x for GNU Coreutils [38]. As discussed in [39],
LLVM compiler's -O0 flag can contribute different paths from flag
-O2 (which contributes 1024 and 2 paths, respectively, for its
sample code). Cadar claims that one should treat program
transformations as first-class ingredients of scalable symbolic
execution, alongside widely-accepted aspects such as search
heuristics and constraint solving optimisations [39].

With this insight, we propose that in the future, binary
executables should be pre-processed to transform testing-expensive
code structures to testing-cheap ones. For example, transforming a
long string comparison instruction to several isolated byte
comparison instructions will improve the performance of fuzz
testing. Similar to [40], the binary pre-processing stage should
recognise which code areas are the testing ‘hot spot’ and remove/
transform them to avoiding getting stuck in such areas. These
transformations can either be semantic-preserving or semantic-
altering transformations. The key research problem is how to
perform these transformations on binary level, since most high
level program information is lost during compilation. On possible
solution to achieve such transformations is to lift binary code into
intermediate expression such as LLVM byte code, then perform
more analysis to recover program information such as control flow
graph, data dependency, and control dependency.

6.2.2 Finding bugs with machine learning: Many research
papers treat the vulnerability detection with dynamic symbolic
execution and fuzz testing as a search problem. Since the search
space of modern software can be vast, exhaustive exploration of
this space is currently impossible. Reducing the search space may
lead to better coverage. However, this may miss interesting sub-
spaces where contain vulnerabilities. In order to find deeper bugs
when reducing the search space, one has to locate secure-sensitive
code areas based on static analysis, and then uses search heuristics
to guide the program exercise these areas. Since each type of
vulnerability has its own unique characteristic [41–43], some
researchers have attempted to use machine learning to
automatically extract such characteristics in source code, and then
predict potential vulnerabilities [44, 45].

In 2016, Grieco et al. proposed a binary software vulnerability
predict tool VDISCOVER as well as a public dataset that collects raw
analysed data [46]. They ‘managed to predict with reasonable
accuracy which programs contained dangerous memory
corruptions’ [46]. Based on such work, we propose that in the
future, machine learning could be ported to binary software
vulnerability detection by cooperating with guided testing
techniques. Since machine learning can raise many false positives,
one can leverage guided dynamic symbolic execution to mitigate
the false positives and verify the existence of potential
vulnerabilities.

7 Related work
We have presented the major advantages of our method in the
previous sections and compared our system with some state-of-the-

art vulnerability discovery tools. In this section, we present the
techniques that related to our method.

Similarity distance in regression testing: Similarity based
algorithms have previously been leveraged in regression test case
prioritisation [34, 47, 48]. Test case prioritisation is a hot research
topic in regression testing research, which tries to optimum
mutation schedule based on a specific prioritisation criterion.
Rothermel et al. proposed fine-grained prioritisation strategy based
on the instruction coverage and branch coverage [49]. Then
Elbaum et al. concentrated on function level coverage and they
proved that this kind of coarse-grained instrumentation which can
reduce the execution overhead but will lose some prioritisation
performance [50]. Krishna et al. utilised Levenshtein distance as
the criterion of prioritisation [51]. Rather than using an ordered
branch sequence to present the path in [34], we represented the
execution path by using the bitmap in AFL, which is more practical
and efficiency.

Taint analysis based fuzz testing: Taint analysis based fuzz
testing uses DTA to locate regions of seed input that affect the
execution path. BuzzFuzz uses DTA to automatically locate
regions of original seed input files that influence values used at key
program attack points, and then automatically generates new
fuzzed test input files by fuzzing these identified regions of the
original seed input files [5]. TaintScope is a directed fuzzing tool
working at X86 binary level. Based on fine-grained DTA,
TaintScope identifies which bytes in a well-formed input are used
in security-sensitive operations (e.g. invoking system/library calls)
and then focuses on modifying such bytes. TaintScope is also
capable of bypassing checksums via control flow alteration [52].
Dowser is a guided fuzzer that combines static analysis, DTA, and
symbolic execution to find buffer overflow vulnerabilities deep in a
program's logic, and it ranks pointer dereference instructions
according to their complexity, and then uses symbolic execution to
zoom in on the most interesting operation [53].

Dealing with symbolic pointers: The symbolic pointer problem
occurs when the program dereferences a symbolic address.
Previous work on symbolic execution deals with this problem by
leveraging the full symbolic memory model [24–27]. Under this
model, if an instruction reads/writes to a symbolic address, then
each possible value of this address will fork a corresponding state
so that all possible paths can be exercised. As previously discussed,
forking state for each possible value will quickly cause path
explosion. In 2014, Mayhem [31] introduced a partial memory
model to ease the scalability problem inherit in the full symbolic
memory model. In the partial memory model, states are only
forked when reading a symbolic pointer. A write operation causes
the symbolic pointer to be concretised. This can reduce the number
of forked states, but a high number of read operations may still
cause path explosion. Our LCSP method takes advantages of S2E's
lazy forking to postpone the path explosion problem to a later
moment. LCSP can also improve code coverage by solving the
pending states from lazy forking on demand. Recently, MEMSIGHT
[54] introduces a new approach to symbolic memory that reduces
the need for concretisation but still can explore more states. It
leverages stage merging [55] to compact symbolic pointer read
operations. Some optimisations are introduced to deal with
performance issues in MEMSIGHT, e.g. it constraints the range of
symbolic pointer to a certain interval by leveraging SMT solver,
which we also used in BREACHER. It also proposed a memory-wise
paged interval tree to enable better memory space usage. The
experimental results compared with Angr show MEMSIGHT enables
the exploration of states unreachable by previous techniques. Since
we are dealing with the symbolic pointer problem in hybrid testing
of real-world binaries, which currently Angr cannot support very
well now (e.g. complex library function model problem), we will
investigate more about MEMSIGHT in the near future to adopt its
advantages in hybrid testing.

Hybrid testing method: As mentioned before, our method is not
the first tool to combine fuzz testing and symbolic execution.
Hybrid fuzz testing uses symbolic execution to discover frontier
nodes that represent unique paths in the program [13]. After
collecting as many frontier nodes as possible under a user-
specifiable resource constraint, it transits to fuzz the program with

IET Softw., 2018, Vol. 12 Iss. 6, pp. 507-519
© The Institution of Engineering and Technology 2018

517

 17518814, 2018, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-sen.2017.0200 by N

H
M

R
C

 N
ational C

ochrane A
ustralia, W

iley O
nline L

ibrary on [08/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



random inputs. This tool focuses on binaries but only performs the
one-time transition between symbolic execution and fuzz testing.
Hybrid concolic testing implements multiple transitions between
symbolic execution and fuzz testing [12]. However, because it is
built on top of CUTE, a source code oriented testing tool, so hybrid
concolic testing still cannot be deployed on binary testing directly
[56]. Driller is an up-to-date hybrid testing tool that leverages fuzz
testing and concolic execution in a complementary manner to find
deeper bugs [9]. It is more practice when compared with previous
hybrid tools. Some other tools try to make full use of symbolic
execution to maximise the code coverage, they collect symbolic
constraints placed on each input and then negating these constraints
to generate a new test case that will take another uncovered path,
such as SAGE [11], Dowser [53], FuzzWin [57] and so on.
However, as these tools execute each input in the symbolic mode
which determines that they have to face the path explosion
problem.

8 Conclusion
In this paper, we focused on improving the performance of hybrid
testing method built on coverage-based fuzz testing and dynamic
symbolic execution. We proposed a novel method, lazy
concretisation, to deal with symbolic pointers. We found that this
method mitigates the path explosion problem and improves code
coverage. We also introduced the loop bucket optimisation in order
to avoid generating too many states in symbolic loops. In order to
deal with the large size of the seed queue in hybrid testing, we
presented a distance-based seed selection method to achieve more
coverage when testing time is limited. This criteria of selection
method is built on top of runtime information (i.e. path and
memory information). The evaluation of BREACHER on several
benchmarks demonstrates that our method can discover more
unique paths than vanilla fuzz testing and finds more bugs
compared with other off-the-shelf vulnerability analysis tools.
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