A Key Distribution Protocol for Wireless Sensor
Networks

Adrian Herrera*
C3I Division
Defence Science & Technology Organisation
Adelaide, Australia
Email: Adrian.Herrera@dsto.defence.gov.au

*The author worked on this project while at
the CSIRO and the University of Wollongong

Abstract—This paper presents the design, implementation and
evaluation of an automated method for distributing symmetric
cryptographic keys in a Wireless Sensor Network (WSN). Unlike
previous methods for key distribution in WSNs, we do not
rely on sensitive knowledge to be stored in program memory
prior to network deployment. Additionally, the protocol proposed
uses dominant security primitives to ensure strong security and
interoperability with existing networks (such as the Internet),
while operating independent of the network layer protocol.
Through both hardware experimentation and simulation, we
show that this protocol can provide strong confidentiality, in-
tegrity and authenticity protection to the symmetric keys as
they are distributed throughout a network, while maintaining
the ability to scale to large-size networks and remain energy
efficient.

I. INTRODUCTION

Previous work in WSN security has often relied on sensitive
cryptographic knowledge preloaded into a mote’s CPU prior to
network deployment. This results in increased risk to network
security, as the capture of a single node by an adversary can
lead to the compromise of the shared secret and hence all
communication within the network [9].

To overcome this problem, we propose a key distribution
protocol that does not rely on preshared cryptographic knowl-
edge, is simple to use and is highly automated. Our work
is primarily based around motes equipped with a Trusted
Platform Module (TPM), such as the CSIRO Opal mote [6].
For those motes not equipped with a TPM, we utilise the
TinyECC library [7] to provide the equivalent cryptographic
functions (using ECC PKC rather than RSA). From our work
we have identified the following properties that we believe a
key distribution protocol should provide: security, simplicity,
syndication, scalability, efficiency and interoperability.

II. MOTIVATION AND SYSTEM ASSUMPTIONS

The simplest approach for distributing a shared symmetric
key amongst nodes in a WSN is to preload each sensor node
with a network-wide fixed key prior to deployment (for ex-
ample, in program memory). This approach has the following
advantages [2]: there is no associated communication overhead
because nodes are not required to communicate with each

Wen Hu
Autonomous Systems Laboratory
CSIRO ICT Centre
Brisbane, Australia
Email: Wen.Hu@csiro.au

other to initialise the key; storage requirements are minimal
because each node is only required to store a single key; and
the approach is highly scalable because no communication
between nodes is required upon deployment.

The main disadvantage of this technique is that the com-
promise of a single sensor node results in the compromise
of the entire network [8]. Additionally, a single network-wide
preshared key is unable to ensure authenticity at the sensor
node level.

Our aim is thus to design a protocol for distributing
symmetric cryptographic keys amongst resource-constrained
(computation, memory and energy) motes within a WSN. In
order to make the proposed protocol effective in real-world
sensor network deployments, it must adhere to the properties
listed in §I.

A. Assumptions

For the purposes of this key distribution protocol, we first
assume a single-tier hierarchical WSN, where a node is either
a sensor node or a base station. If the node is a base station,
it is assumed to be attached to a more powerful and secure
workstation for storing cryptographic keys, or for offloading
the required cryptographic operations.

Secondly, the key distribution protocol proposed provides a
method for distributing cryptographic keys throughout a WSN
to allow for secure sensor node-to-base station communication
only. This suits our target applications (for example, control
in industrial environments and remote sensing on the battle
field), where data is collected by sensor notes and required to
be securely forwarded through the network to a central base
station.

Finally, after the key distribution procedure has completed,
we assume that the motes will use a symmetric encryption
technique for further communication of data to the base
station.

III. PROTOCOL DESIGN

In this section we describe the proposed key distribution
protocol in detail. This is followed by the justification of our
design choices against the required properties listed in §l.

A. Protocol Description

Table I outlines the notation used to describe our key
distribution protocol. The procedure for obtaining a shared key
to allow a sensor node to communicate with the base station
securely is illustrated in Fig. 1.

Symbol Description

Ky y Symmetric key shared between = and
Y

K z’s public key

Ky x’s private key

H(.) Cryptographic hash operation

{}x Encrypt/sign operation using key K

TABLE I
DESCRIPTION OF CRYPTOGRAPHIC NOTATION

Sensor node (S) Base Station (BS)

Request for shared key

Generate Kg, s

I
I
I I H(Ks, Bs) |‘ I {KS,.BS}K; |

Encrypt
shared key

Time

|
Generate

|
|
| |{H (Ks,.55)} g
| .
‘ signature I

Decrypt (1\14..[;5),\-»1‘ AH (Ksy85)} i,

shared key

H (Ks,,B5)

®

Acknowledge shared key

Fig. 1. Key distribution protocol flowchart

During deployment, the base station’s (B.S) public key is
loaded on to all nodes within the network. Similarly, all sensor
node’s public keys are stored in BS. For large-size networks,
the public keys would be stored in a database on the base
station’s attached workstation.

A sensor node (S7) periodically sends a request for a new
shared key to BS. To defend against replay attacks, a nonce is
included with this request. This nonce is randomly generated
by the sensor node for each key request, and also serves as the
initial sequence number for that session. After receiving the
request, BS produces the shared key Kg, pg. The length of
Ks, Bs is dependant on the symmetric encryption algorithm
intended for securing future communication.

Following the generation of K, pg, BS encrypts Kg, ps
with S7’s public key and calculates a signature using a SHA1
hash of Kg, ps. The encrypted key and signature pair are
transmitted to 5.

Upon reception of the encrypted shared key and signature
pair, S; can use it’s private key to decrypt Kg, ps. The
signature is then verified based on the SHAI value of Kg, pg

and the public key of BS. If the signature is verified correctly,
an acknowledgement message is sent to BS. BS can then
associate Kg, ps with S7 for securing future communication.

B. Reliable Communication

No assumptions were made on the underlying network layer
protocol; our key distribution protocol has been designed to
function independent of the network layer protocol used.

Although the TPM’s 2048-bit RSA engine provides interop-
erability with existing cryptography standards, one downside is
the relatively large size of the encrypted message and signature
produced. Because the MTU of low-power networks is typi-
cally limited to 128 bytes, packet fragmentation is required.
To ensure reliable end-to-end communication between a sensor
node and the base station, a stop-and-wait ARQ scheme was
implemented [4].

For motes without a TPM, we use 160-bit ECC. While
the TPM’s MTU limitations do not exist when ECC is used,
reliable end-to-end communication is still required in the case
where packets are lost.

A basic form of network congestion control was also
implemented. This included exponential timeouts for dropped
packets and packet snooping on neighboring nodes [4].

C. Protocol Properties

In this section we analyse the proposed approach against
the desired properties listed in §l.

Security When the TPM is utilised, the proposed key dis-
tribution protocol does not rely on sensitive cryptographic
knowledge to be preloaded into each mote’s CPU prior
to network deployment. Sensitive information is instead
stored within the tamper-resistant TPM. Note that this
is not the case when ECC is used, because the private
keys must be stored within the CPU’s memory (which
is not tamper-resistant). Additionally, both RSA and
ECC PKC ensure the necessary levels of communication
confidentiality and authenticity.

Simplicity The proposed key distribution protocol does
not require any human intervention once the network has
been deployed. This makes it highly automated.
Syndication The proposed key distribution protocol
makes no assumption on the underlying network layer
protocol, and has been designed to ensure independence.
We have implemented and evaluated the proposed key
distribution protocol on top of a number of popular
network layer protocols available in TinyOS; Collection
Tree and Dissemination. We will discuss this property
further in §IV.

Scalability We will show that the proposed protocol can
scale to large-size networks with small key distribution
times in §V-C.

Efficiency While PKC is not traditionally used in WSNs
due to the high overheads, the inclusion of the TPM
provides an efficient mechanism to perform these opera-
tions at less than 5% of the financial cost of the mote
hardware [5]. We also implemented the cryptographic

primitives using the TinyECC library. A comparison of
the two PKC methods is provided in §V.
Interoperability The proposed protocol uses dominant
security primitives (namely, RSA PKC) to ensure inter-
operability with traditional networks such as the Internet.
While ECC offers smaller key sizes, it is not as widely
used in the Internet and thus limits interoperability.

IV. PROTOCOL IMPLEMENTATION

Our key distribution protocol has been developed for the
CSIRO Opal mote [6] running the TinyOS 2.x operating
system [1]. Two interfaces are provided: an application-level
interface to start, stop and set the renewal frequency of the key
distribution procedure; and a network layer interface to wrap
the required network layer protocol and provide an end-to-end
communication service to the application-level interface [4].

A. Parallel Key Distribution

Because we assume the base station is typically resource-
rich compared to a sensor node (i.e. it has access to a work-
station), the key distribution protocol was extended to allow
multiple concurrent key distribution transactions in the base
station. This was achieved via a multithreaded Java application
that executes on the base station, with a new thread allocated
for each key request. Interoperability can be ensured by using
standard cryptography packages and classes (e.g. those from
the javax.crypto and java.security packages).

V. EVALUATION

We evaluated our key distribution protocol using both a
small-scale network testbed and large-scale network simula-
tion. Due to our development platform featuring an integrated
TPM we mainly focus on these results, and offer our TinyECC
results as a comparison. Further details are available in [4].

A. Execution Times

A pair of Opal motes was used to measure the time taken for
a single sensor node to request and receive a shared key from
the base station. The execution times of the various operations
required by the key distribution protocol were measured and
are given in Fig. 2.

Fig. 2 shows that the sensor node spent a total of 1,277 ms
on cryptographic operations when the TPM was used. This
included RSA decryption (972 ms) and signature verification
(305 ms). In comparison, the base station spent 1,239 ms. This
included symmetric key generation (19 ms), RSA encryption
(257 ms) and signature generation (963 ms).

The TPM also required 836 ms to execute the various
initialisation routines [3]. In total, the time for a sensor node
to request, receive and verify a shared key was approximately
3.452 seconds.

The TinyECC operations were on average four times slower
than the equivalent RSA-based operations executed on the
TPM (Fig. 2). Note that the TinyECC library required its own
initialisation to generate the required elliptic curve parameters
and public keys. The total time for the TinyECC-based key

4000
I RSA key dist.

[TJECC key dist.

3000

)

e (ms

2000

Tim.

1000

Init. Gen. Enc. Gen. Comm.Dec. Verify
key key sig. key sig.

Fig. 2. Execution times of the different stages of the key distribution protocol

distribution protocol to execute was approximately 10.728
seconds.

B. Energy Requirements

Fig. 3 shows the current consumption over time for both
the sensor node and base station as they completed the key
distribution procedure (with the TPM). Similarly to §V-A,
the base station mote (rather than the attached workstation)
performed all the required cryptographic operations.

100, 100
Deactivate TPM
Encryption Generate signature TPM startup /
PRARE it A T T
80 . 80 M i
Yoty ol
-
E 60 \ L;m gGO DecryptionH
e Generate T k< + signature veriﬁcation‘
E 400 | shared key Transmit- §40
o Microcontroller shared key O
201+ radio - 20 Microcontroller
+TPM idle T Mo —
¢ + TPM idle
0 [0)
0 0.5 1 0 0.5 1 15 2 25
Time (seconds) Time (seconds)
(a) Base station (b) Sensor node
Fig. 3. Current draw over time for two motes performing the RSA-based

key distribution procedure

Because the base station mote is typically connected to a
permanent power supply, its TPM remains active. This avoided
the delays associated with TPM startup.

To minimise current consumption and energy requirements,
the sensor node’s TPM was only activated when required (i.e.
when a cryptographic operation was required).

When the TPM was activated but idle, it consumed ap-
proximately 60 mA. When performing a computationally-
intense operation (e.g. RSA encryption/decryption or RSA
signature generation/verification), the current consumption of
the mote increased to approximately 80 mA. When less
computationally-expensive operations were executed (e.g. ran-
dom number generation or an operation on the I2C bus) current
consumption decreased to approximately 70 mA.

When performing computationally-expensive ECC opera-
tions (e.g. encryption, decryption, signature generation and
signature verification), the current draw of the Opal mote
increased by 20 mA to 47 mA. Note that the Opal mote con-
sumed approximately 27 mA when both the microcontroller
and radio were idle.

The energy consumption of each operation is given in Table
II (based on the results here and §V-A).

Energy (ml])

Operation TPM TinyECC
Initialisation 273.87 442.55
Generate key 5.7 N/A
Encrypt key 84.3 585.43
Generate signature ~ 323.57 275.42
Communication 125.33 405.54
Decrypt key 326.59 356.26
Verify signature 100.04 349.68
Total 1,239.4 2,414.88
TABLE I

ENERGY CONSUMPTION OF THE DIFFERENT OPERATIONS IN THE KEY
DISTRIBUTION PROTOCOL

C. Scalability

The results in §V-A were used as the basis for investigating
the scalability of the key distribution protocol in large-scale
WSNs. Using the execution times shown in Fig. 2, the various
TPM operations were replaced by timer components to emu-
late the TPM’s functionality. This allowed the key distribution
protocol to be simulated in the TinyOS SIMulator (TOSSIM).

To measure scalability, the TOSSIM simulation was repeat-
edly run over a number of varying-sized network topologies.
For each simulation, the total time taken for the base station
to distribute the key to each of the sensor nodes in the
network was recorded. This was done for both the CTP and
Dissemination network layer protocols.

——Dissemination ——Max. 10 concurrent clients|
-=-CTP/Dissemination -e-Max. 20 concurrent clients|
40; Max. 30 concurrent clients| Vi
— — -»-Max. 40 concurrent clients|
4 210 /
S 30 g 1 A4
2 e 2 YA
E & g E Ff AT
o s g o L/
E20 a £ J/I v i
[= A F 5 L/ F G f
T p ¥ %
10 o A
LT = 4
Lz &
r’}/ ._&"

150 0 50 100
Number of nodes

(b) Multi-threaded server

50 100 150
Number of nodes

(a) Single-threaded server

Fig. 4. Time taken to complete the key distribution procedure

Fig. 4a shows the total time for both the Dissemination
and CTP network protocols increased exponentially with the
size of the network. Using only the TinyOS Dissemination
protocol, the key distribution protocol was able to complete
in 25% less time than when a combination of CTP and
Dissemination was used.

If the key renewal frequency is once per day at 1% duty
cycle (which allows 1% x 24 x 60 = 14.4 minutes to
complete the key distribution procedure for all nodes within
the network), then the Dissemination protocol can operate in
a network of up to 80 nodes. In comparison, the combination
of CTP and Dissemination can operate with up to 60 nodes
only.

D. Parallel Key Distribution

To further improve the efficiency of the key distribution
protocol, the base station mote’s cryptographic operations were
offloaded to the attached workstation to allow the processing
of multiple sensor nodes concurrently. As introduced in §IV-A,
a multithreaded Java application was developed to achieve this
parallelisation. The number of concurrent clients was limited
to between 10 and 40 nodes, while the Dissemination protocol
was used as the underlying network protocol.

Fig. 4b shows that parallelising the key distribution protocol
introduced a significant 74% improvement in the total time to
distribute a shared key to 150 sensor nodes while serving a
maximum of 20 to 40 concurrent clients. This improvement
makes the proposed key distribution protocol practical in
real-world sensor network deployments. For example, if the
key distribution procedure requires less than 10 minutes to
complete in a 150-node network (while serving a maximum
of 20 to 40 concurrent sensor nodes) and is performed once per

10

day, this represents a duty cycle of only 5257 x100% = 0.7%.

VI. CONCLUSION

We have introduced a key distribution protocol that provides
an efficient, secure and automated method for providing nodes
within a WSN with a symmetric cryptographic key that can be
used for securing data communication. The choice of RSA or
ECC encryption primitives (through an integrated TPM and the
TinyECC library respectively) is offered, however we favour
the functionality provided by the TPM. Our evaluation shows
that this key distribution protocol is able to provide a high level
of security (through tamper-resistant hardware and RSA PKC)
and interoperability (through RSA PKC), while maintaining
efficiency (in both energy and memory requirements) and the
ability to scale to large-size networks.

REFERENCES

[1] T. T. 2.x Working Group, “Tinyos 2.0,” in Proceedings of the 3rd
international conference on Embedded networked sensor systems, ser.
SenSys "05. New York, NY, USA: ACM, 2005.

H. Chan, A. Perrig, and D. Song, Key distribution techniques for sensor
networks. Norwell, MA, USA: Kluwer Academic Publishers, 2004.

T. C. Group, TPM Main - Part 3 Commands, Trusted Computing Group,
July 2007, specification Version 1.2.

A. Herrera, “A key distribution protocol for wireless sensor networks,”
University of Wollongong, undergraduate thesis, 2011.

W. Hu, H. Tan, P. Corke, W. C. Shih, and S. Jha, “Toward trusted wireless
sensor networks,” ACM Trans. Sen. Netw., vol. 7, no. 1, Aug. 2010.

R. Jurdak, K. Klues, B. Kusy, C. Richter, K. Langendoen, and M. Briinig,
“Opal: A multi-radio platform for high throughput wireless sensor net-
works,” Embedded Systems Letters, vol. 3, Issue 4, November 2011.

A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic curve
cryptography in wireless sensor networks,” in Information Processing
in Sensor Networks, 2008. IPSN ’08. International Conference on, april
2008.

A.-N. Shen, S. Guo, and H.-Y. Chien, “An efficient and scalable key
distribution mechanism for hierarchical wireless sensor networks,” in
Sarnoff Symposium, 2009. SARNOFF ’09. IEEE, 30 2009-april 1 2009.
A. Wood and J. Stankovic, “Denial of service in sensor networks,”’
Computer, vol. 35, no. 10, oct 2002.

(6]

(71

(8]

(9]

