
Optimizing Away JavaScript Obfuscation
Adrian Herrera

Defence Science and Technology Group
adrian.herrera@dst.defence.gov.au

Abstract—JavaScript is a popular attack vector for releasing
malicious payloads on unsuspecting Internet users. Authors of
this malicious JavaScript often employ numerous obfuscation
techniques in order to prevent the automatic detection by
antivirus and hinder manual analysis by professional malware
analysts. Consequently, this paper presents SAFE-DEOBS, a
JavaScript deobfuscation tool that we have built. The aim
of SAFE-DEOBS is to automatically deobfuscate JavaScript
malware such that an analyst can more rapidly determine the
malicious script’s intent. This is achieved through a number of
static analyses, inspired by techniques from compiler theory. We
demonstrate the utility of SAFE-DEOBS through a case study
on real-world JavaScript malware, and show that it is a useful
addition to a malware analyst’s toolset.

Index Terms—javascript, malware, obfuscation, static analysis

I. INTRODUCTION

The past decade has seen JavaScript’s popularity steadily
increase (and continue to increase): the language is supported
by all modern web browsers and used in 95% of all web-
sites [1]; it constantly ranks within the top ten most popular
programming languages [2–4]; and thousands of libraries and
frameworks have been built on top of it [5]. However, this
pervasiveness has a dark side: the ubiquity of JavaScript on
the Internet has also made it popular amongst people with
malicious intent. For example, JavaScript is commonly used
for gaining initial code execution via a browser or PDF reader
vulnerability [6, 7], installing cryptocurrency miners [8], and
in cross-site scripting (XSS) and cross-site request forgery
(CSRF) attacks.

The rise of malicious JavaScript (“JavaScript malware”)
has resulted in a renewed focus by both antivirus companies
and security researchers [7–12]. In turn, authors of JavaScript
malware have increasingly turned to obfuscation as a means of
(i) hiding from automatic detection by anti-virus products, and
(ii) hindering manual analysis by professional malware ana-
lysts. Thus, tools are required to undo this obfuscation so that
JavaScript malware can be detected by antivirus engines and
more easily inspected and understood by malware analysts.

We propose and prototype a tool that accomplishes these
goals. Our tool, SAFE-DEOBS, is a static analyzer built
on top of the SAFE framework [13, 14]. It repurposes a
number of common compiler optimizations for the purpose
of deobfuscating JavaScript malware in order to make it
more understandable by subsequent automatic and manual
analyses. This paper summarizes our experiences designing,
implementing, and evaluating SAFE-DEOBS. Our primary
contributions are:

• Applying techniques rooted in compiler theory to the task
of deobfuscating JavaScript malware;

• The design and implementation of SAFE-DEOBS, an
open-source tool to assist malware analysts to better
understand JavaScript malware; and

• An evaluation of SAFE-DEOBS on a large corpus of real-
world JavaScript malware.

Unless otherwise stated, all malicious code used in this
paper is taken from real-world malware.

II. BACKGROUND AND RELATED WORK

Software obfuscation has many legitimate uses: digital
rights management, software diversity (for software protec-
tion), and tamper protection, to name a few. However, software
obfuscation is being increasingly co-opted by malware authors
to thwart program analysis (both automated and manual).

When discussing JavaScript obfuscation (and obfuscation
of other scripting languages; e.g., PHP, PowerShell), it is
important to differentiate obfuscation from minification. Mini-
fication reduces code size by removing unnecessary charac-
ters/strings (e.g., whitespace and comments) and shortening
variable names. Small code size means less data to download
over the Internet, which leads to reduced web page load
times. In contrast, the aim of obfuscation is to make the code
difficult to read and understand. Undoing most minification
(commonly referred to as “beautification”) is trivial—e.g., by
(re)inserting whitespace—and many tools exist to do this (e.g.,
UglifyJS [15], which we applied to the code in Listing 1).
In contrast, deobfuscation often requires advanced program
analyses (e.g., symbolic execution [16] and abstract interpre-
tation [17]). Like Lu and Debray [10], we do not consider
minification as obfuscation.

1 // From 20151226_9474ac02eae3bbe9bcf19d94c8e68a25
2 var str = "5553515E0A0D0108174A0E05010"/* ... */;
3 var k6 = ’;’, e5 = ’%")+’, h3 = ’’, w9 = eval,
4 /* 218 more variables */;
5
6 h3 += d1;
7 h3 += x0;
8 h3 += d7;
9 /* 215 more operations */

10 w9(h3);

Listing 1: A snippet of (beautifed) obfuscated JavaScript.
Comments have been inserted by us.

Listing 1 shows a snippet of an obfuscated JavaScript
malware sample. To a human (even a highly-trained malware

analyst), it is not immediately obvious what the code in List-
ing 1 does: this code defines 222 variables and performs 219
operations on these variables (most of which are not shown,
due to space limitations). An automated tool attempting to
either signature the malware or extract features (e.g., callback
URLs, API calls) will also face difficulties.

Furthermore, JavaScript presents the opportunity to apply
obfuscation techniques that are generally unapplicable to
compiled languages (e.g., C, C++, and Java). For example,
previous work [9, 10] has observed the following obfuscation
techniques actively used in the wild:
String splitting: The conversion of a single string into the

concatenation of several substrings, as observed on
Lines 6 to 8 in Listing 1.

Keyword substitution: Storing keywords in variables, such
as eval being stored in w9 on Line 3 and called via w9
on Line 10 in Listing 1.

String encoding: Encode strings so that they are not read-
able, e.g., via escaped ASCII characters, hexadecimal, or
Base64 representations.

Finally, JavaScript’s “quirky semantics” [13] deserve special
mention. These include:
Variable hoisting: JavaScript allows variable declarations af-

ter the variable has been used. These variable declarations
are moved (“hoisted”) to the top of the scope in which
they are used.

with scoping: Extends the scope of the current statement,
which is specially noted in the Mozilla developer doc-
umentation “as it may be the source of confusing
bugs” [18].

eval: Dynamically executes JavaScript code and is a known
security risk [19].

These semantics can be abused (by both malicious and be-
nign code alike) to make both static analysis and deobfuscation
difficult [7, 13].

To this end, existing work on JavaScript (de)obfuscation
has mostly focused on detecting (and preventing) malicious
JavaScript, often using machine learning [11, 20–23] or pro-
gram analysis [7] techniques. Machine learning approaches
(e.g., random forests, support vector machines) have been
shown to be effective when combined with semantic features
(e.g., control flow and program dependency graphs, as used
by JSTAP [22]). Similarly, program analysis techniques (such
as abstract interpretation) that operate on (an abstraction of)
JavaScript’s semantics have also been effective at detecting
JavaScript malware [7]. This is likely due to the fact that
obfuscation must maintain the original code’s meaning (i.e., its
semantics), while syntactic features are easier to manipulate.
However, this focus on detection has traditionally eschewed
readability: the focus of deobfuscation. Our work therefore
complements much of this existing research.

A. Related Work

Lu and Debray [10] combine dynamic analysis (to capture
a JavaScript execution trace) and static analysis (backward

slicing of the execution trace to create a simplified Abstract
Syntax Tree) to produce observationally equivalent output
JavaScript. Dynamic analysis allows for code “hidden” in an
eval call to be analyzed and deobfuscated. However, dynamic
analysis can also be thwarted by environmental checks that
may not be satisfied when the malware is under analysis. Their
prototype is also not publicly available.

JSNICE uses “big code” and machine learning to predict
program properties (e.g., variable names and type annotations)
for JavaScript code [24]. While not open-source, the JSNICE
authors have created a website1 that promises to “make
even obfuscated JavaScript code [uploaded to the website]
readable”. Unfortunately, uploading the code from Listing 1
resulted in the code in Listing 2: while the type annotations are
accurate, this code is no-more readable than that in Listing 1.

1 ’use strict’;
2 /** @type {string} */
3 var str = "5553515E0A0D0108174A0E05010"/* ... */;
4 /** @type {string} */
5 var k6 = ";";
6 /** @type {string} */
7 var e5 = ’%")+’;
8 /** @type {string} */
9 var h3 = "";

10 /** @type {function(string): *} */
11 var w9 = eval;
12 /* 218 more variables */
13
14 /** @type {string} */
15 h3 = h3 + d1;
16 /** @type {string} */
17 h3 = h3 + x0;
18 /** @type {string} */
19 h3 = h3 + d7;
20 /* 215 more operations */
21 w9(h3);

Listing 2: A snippet of the JavaScript from Listing 1
“deobfuscated” by JSNICE. Comments enclosed within
/** */ (i.e., the type annotations) were generated by
JSNICE. Other comments have been inserted by us.

Other tools, such as “deobfuscate javascript”2 perform
deobfuscation by intercepting calls to eval and write.
This approach is able to successfully deobfuscate the sample
in Listing 1 (due to the eval substitution on Line 10).
However, as noted on their website: “some malicious scripts
may not employ these functions and may therefore infect your
browser”.

This opens the door for a new, open-source tool for
JavaScript malware deobfuscation. To this end, the following
sections discuss the design and implementation of our contri-
bution to this field.

III. DESIGN AND IMPLEMENTATION

The SAFE-DEOBS workflow is illustrated in Fig. 1. The
obfuscated JavaScript is parsed into an Abstract Syntax Tree

1http://www.jsnice.org/
2http://deobfuscatejavascript.com/

http://www.jsnice.org/
http://deobfuscatejavascript.com/

Obfuscated
JavaScript

Deobfuscated
JavaScriptSAFE-DEOBS

Constant folding
Constant propagation
Dead-branch removal
Function inlining
String decoding
Variable renaming

Fig. 1: The SAFE-DEOBS workflow.

(AST), upon which a number of deobfuscation passes are
performed (much like a compiler performing a set of opti-
mization passes). These passes are continuously applied until
a fixed point is reached, at which point the AST is serialized
back into JavaScript source code. The set of deobfuscation
passes that we developed (listed in Fig. 1) will be described
in Section III-B. But first, the JavaScript must be transformed
into a form amendable to analysis.

A. Preprocessing

We reuse existing tools to parse and preprocess the in-
put JavaScript. Specifically, we use the Scalable Analysis
Framework for ECMAScript (SAFE v2.0) [13, 14] to parse
JavaScript into an AST that can be further analyzed.

SAFE is a scalable analysis for JavaScript3 that provides dif-
ferent levels of intermediate representations (IR). We selected
SAFE because it is open-source and “especially designed
as a playground for advanced research in JavaScript web
applications” [14]. Furthermore, SAFE is primarily written
in Scala, a functional programming language. Features stan-
dard in functional programming languages—such as pattern-
matching and support for efficient recursion—lend themselves
well to writing analyses/transformations that operate on trees
(i.e., ASTs).

While SAFE provides three levels of IR, we only use the
lowest level: the AST. The higher levels (the Intermediate
Representation and Control Flow Graph) are not used because
they only support one-way translation: from lower levels up to
higher levels. As the higher IRs are aimed at analysis, rather
than transformation, there is no mechanism to translate higher
IRs back to JavaScript.

Finally, we make use of two features in SAFE’s AST
translator that simplify further analysis: the Hoister and
WithRewriter. The Hoister lifts variable declarations
so that they appear at the top of the current scope, sepa-
rating declarations from initializations. The WithRewriter
conservatively eliminates with statements such that lexical
scoping remains valid. After this, the AST is ready for
deobfuscation.

3We use ECMAScript and JavaScript interchangeably throughout this paper.

if (typeof ifopracxa == ’und’ + ’efin’ + ’ed’)

(a) The original JavaScript code.

...

op

op

’und’ + ’efin’

+ ’ed’

...

op

’undefin’+ ’ed’

...

’undefined’

(b) The AST as constant folding is applied (from left to right).

Fig. 2: Constant folding example.

B. Deobfuscation Passes

After preprocessing, SAFE-DEOBS performs a number of
“deobfuscation passes” (“phases” in SAFE parlance) on the
AST until a fixed point is reached. These phases include:
(i) constant folding; (ii) constant propagation; (iii) dead-branch
removal; (iv) function inlining; (v) string decoding; and
(vi) variable renaming, totalling 2474LOC of Scala. The first
four phases should be familiar to those with an understanding
of common compiler optimizations, while the last two are
specific to scripting languages. We describe each of these
phases in the following sections.

1) Constant Folding: Constant folding aims to recognize
and evaluate constant expressions. This process is illustrated
in Fig. 2, where string splitting has been applied to a string
literal (Fig. 2a) in an if condition. The original string can be
recovered by traversing the AST (Fig. 2b) and rewriting nodes
where an arithmetic operation occurs on two constant nodes.

SAFE’s AST representation and Scala’s pattern-matching
feature make this straightforward to implement: Listing 3 gives
an example of one such rule (the concatenation of strings with
integers). While we have implemented 59 rules, JavaScript’s
quirky semantics (Section II) means that corner-cases may
remain unhandled. Fortunately, these rules are straightforward
to extend.

1 case InfixOpApp(StringLiteral(quote, str, false),
2 Op("+"), IntLiteral(int)) =>
3 StringLiteral(quote, s"${str}${int}", false)

Listing 3: An example of a constant folding rewrite rule. This
rule matches on a string concatenated with an integer, resulting
in a single string literal (according to JavaScript’s semantics).

2) Constant Propagation: Constant propagation is the sub-
stitution of known literal values into expressions. Unlike
constant folding (Section III-B1), constant propagation re-
quires (i) maintaining state while the AST is traversed, and
(ii) multiple traversals of the AST.

The state of a variable’s constness must be tracked during
AST traversal: value substitution can no longer occur once

⊤

0 "aabb" false . . .-1.1undefined. . .

⊥

Fig. 3: The constant propagation lattice.

a variable’s constness can no longer be guaranteed. We im-
plement this as an abstract interpretation over the three-level
lattice typically used for constant propagation [25] (Fig. 3).
This lattice contains an infinite number of middle elements,
representing constant values. A variable goes to ⊤ once its
value is no longer constant.

Once constants have been propagated through the AST,
the AST is traversed again to remove redundant variable
assignments.

3) Dead-branch Removal: Dead code is often inserted to
confuse and distract a malware analyst. This dead code is
often revealed by other deobfuscation phases (in particular,
constant folding and propagation). The simplest form of dead
code removal is when a constant (i.e., Literal AST node)
appears in an if condition. In this instance, we can statically
determine which branch will always execute, and remove
the other branch. We apply the same technique to switch
statements, removing unreachable cases.

4) Function Inlining: Function inlining expands trivial
function calls, where the complexity of the analysis deter-
mines what is “trivial”. Like the dead code discussed in
Section III-B3, obfuscation may introduce (i) functions that
are never called, and/or (ii) functions that perform trivial
operations, but nevertheless adds to an analyst’s cognitive load.

Our prototype inlines functions where the function’s AST
consists of a single Return statement that returns a
Literal expression. Examples of such functions are given
in Listing 4. The first function is trivial to inline. The second
function (Ph) becomes inlinable after string decoding and
constant propagation (Sections III-B2 and III-B5 respectively).
Again, Scala’s pattern-matching feature allows for a concise
rule to find such functions (Listing 5).

1 // From 20170124_a0b2eeedbc9c6187927e32645700d1d2
2 function zdykuvpobrenusdegvusipasad/*- ... -*/() {
3 return [/*- ... -*/ , "ing", /*- ... -*/];
4 }
5
6 // From 20190808_536f24111b28ff9febcdaef4ceb47adb
7 function Ph() {
8 var fHC=String.fromCharCode(6688/88+0);
9 nDO = fHC + String.fromCharCode(2600/52-0);

10 /* 7 more operations */
11 oOw = Oy + String.fromCharCode(16*5);
12 return oOw;
13 }

Listing 4: Examples of inlinable functions.

1 // Match the last statement in the function body
2 // Precondition: funcBody contains a single stmt
3 funcBody.last match {
4 // Function returns a literal expression
5 case Return(Some(lit: Literal)) => Some(lit)
6 // Function returns nothing
7 case Return(None) => EmptyExpr
8 // Function returns one of its parameters
9 case Return(Some(VarRef(id))

10 if params.exist(_ == id) =>
11 // Return the param with the given id
12 // Cannot inline
13 case _ => None
14 }

Listing 5: Pattern-matching rules for an inlinable function.

1 var 1I11II;
2 if (III1II() == 1I11I1)
3 11I11I();
4
5 1I11II = 11I1I(1I11I1);

(a) The original code.

1 var dog; // 1I11II
2 if (cat() == parrot)
3 lion();
4
5 dog = tiger(parrot);

(b) After variable renaming.

Fig. 4: An example of variable/function renaming.

Once inlinable functions are found (by traversing the AST),
the AST is traversed (again) so that all FunApp (i.e., function
application) nodes that call an inlinable function are replaced
with the Literal expression returned by the function. For
example, calls to the first function in Listing 4 are replaced
with the returned array literal, while calls to the second
function are replaced with the literal value in oOw (after string
decoding and constant propagation have been applied).

5) String Decoding: As discussed in Section II, strings
can be encoded such that they are unreadable by
most analysts. Common string encoding schemes in-
clude hexadecimal (typically found in string literals, e.g.,
’\x68\x65\x6c\x6c\x6f’) and unicode (commonly de-
coded using the String.fromCharCode function, as used
in Lines 8 to 11 in Listing 4). These encoding patterns are
straightforward to find—by looking for StringLiteral
AST nodes that contain hexadecimal-encoded strings and calls
to String.fromCharCode, respectively—and rewrite.

The encoding schemes thus far have all utilized language
features built into the JavaScript language. Of course, malware
authors are free to implement other encoding (e.g., Base64)
or encryption (e.g., RC4) schemes. While statically detect-
ing these encoding/encryption schemes is impossible in the
general-case, it may still be possible to employ heuristics to
detect such functionality. While our prototype does not support
this, SAFE provides an ideal environment to develop and
experiment with such heuristics.

6) Variable Renaming: Finally, variables (and functions)
can be given complex, confusing and/or similar names to
increase an analyst’s cognitive load. This is demonstrated in
Fig. 4a.

Variable names that share common prefixes complicate vari-

able renaming via regular expressions (depending on the order
in which variables are renamed). Therefore, we developed an
optional4 SAFE phase that renames all variables to animal
names. Animals are deterministically selected so that repeated
deobfuscation of the same sample produces the same result.
The original variable names are placed alongside renamed
variable definitions, in case analysts are required to refer back
to the original malware sample, as in Fig. 4b.

IV. EVALUATION

Here we present (i) a case study on a particular mal-
ware sample (Section IV-A); and (ii) a high-level analysis
over 39 450 malware samples (Section IV-B). Both of these
discussion will use the open-source dataset from Hynek Pe-
trak [26].

A. Case Study

This case study is based on the JavaScript malware sample
20170110_9330ee612a9027120543d6cd601cda83,
which is publicly available from our dataset.

This particular sample has not been minified and consists
of 475LOC, contains 14 functions, and defines 214 variables.
This sample makes for an interesting case study because it is
one of the few samples that does not use eval, and “deobfus-
cate javascript” (Section II) is therefore unable to deobfuscate
it (due to its reliance on hooking eval). Interestingly, JSNICE
is unable to infer any of the 14 functions’ return types, despite
all of these functions being inlinable (according to our inline
rules, described in Section III-B4) and therefore relatively
straightforward to analyze.

Listing 6 shows the deobfuscated sample. All 14 functions
have been inlined and 211 variables have been eliminated
through a repeated combination of constant folding and prop-
agation (a fixed point was reached after four iterations). The
number of lines has been reduced by 97% to 12LOC.

Unfortunately, hamster (Line 6) remains because we do
not model the Document Object Model (DOM, of which the
window object is an element of). Nevertheless, it is now
much easier to reason about the sample’s behavior. Alas, this
behavior primarily consists of executing a string of obfuscated
PowerShell (Line 10). Clearly, SAFE-DEOBS would benefit
from integration with other malware analysis/deobfuscation
tools.

B. Generalizability

We examined all 39 450 malware samples in our dataset to
obtain a high-level understanding of our tool’s efficacy. First,
we removed 7109 invalid samples (18.02% of the dataset) that
escomplex [27]—a tool for performing software complexity
analysis on JavaScript ASTs—failed to parse. Second, we
“normalized” the dataset by running all remaining 32 341
through SAFE’s astRewrite phase, which hoists variable
definitions, rewrites with statements, and beautifies the code
(i.e., undoes minification). This allowed us to remove duplicate

4Occasionally, malware will declare variables such as
var exploitation, which are useful names.

1 var lion; // edeb
2 var hamster; // uvacdykadq
3 var chinchilla; // cqorobcit
4
5 lion = WScript;
6 hamster = typeof window == "undefined";
7 {
8 chinchilla = lion.CreateObject(’WScript.Shell’);
9 if (hamster) {

10 chinchilla["run"](’cmd.exe /c \"powershell
$ojogo=\’ˆdimas.top\’;$hetfo=\’ˆ-Scope Pr
\’;$pobbi=\’ˆ,$path); \’;$innypu=\’ˆocess;
$p\’;$monsucm=\’ˆy Bypass \’;$binkucb=\’ˆ

h\’;$ykpyffy=\’ˆStart-Pro\’;$ykjygr=\’ˆ:
temp+\’\’\b\’;$uzmez=\’ˆe\’\’);(New-\’;
$xzymo=\’ˆSet-Execu\’;$ulirgo=\’ˆtp://laro
\’;$eqtem=\’ˆath=($env\’;$evyvz=\’ˆ).
Downloa\’;$ogxow=\’ˆWebclient\’;$utkyjv
=\’ˆ/777.exe\’\’\’;$gsydibv=\’ˆtionPolic
\’;$upoh=\’ˆstem.Net.\’;$zceqmi=\’ˆObject
Sy\’;$cepsuhm=\’ˆipbafa.ex\’;$qfyzko=\’ˆ
dFile(\’\’ht\’;$awysqe=\’ˆcess $pat\’;
Invoke-Expression ($xzymo+$gsydibv+
$monsucm+$hetfo+$innypu+$eqtem+$ykjygr+
$cepsuhm+$uzmez+$zceqmi+$upoh+$ogxow+
$evyvz+$qfyzko+$ulirgo+$ojogo+$utkyjv+
$pobbi+$ykpyffy+$awysqe+$binkucb);\"’, 0);

11 }
12 }

Listing 6: Case study sample after deobfuscation.

TABLE I: Complexity metrics before and after deobfuscation
(using the normalized, deduplicated samples from our dataset).

Metric Before After % decrease

Total physical LOC 46 724 630 45 491 768 2.64
Total num. functions 324 441 241 091 25.69
Mean cyclomatic complexity 10.58 8.68 17.96
Mean Halstead length 5994.62 4297.03 28.31

samples (identified by SHA512 checksum), leaving 28 285
samples (71.70% of the original dataset).

Finally, we ran SAFE-DEOBS over the 28 285 deduplicated
samples and used escomplex to compare common software
complexity metrics before and after deobfuscation. These
complexity metrics include: (i) physical lines of code (LOC);
(ii) number of functions; (iii) cyclomatic complexity [28]; and
(iv) Halstead length [29]. The results are presented in Table I.

We used both escomplex’s report and manual inspection
to verify deobfuscation correctness. Unfortunately, JavaScript
malware is difficult to verify via dynamic behavioral analysis
because: (i) the malware’s output may vary depending on its
intent (e.g., downloading a second-stage implant, exploiting
a vulnerability) and may not be readily apparent; (ii) the
malware may require complex “trigger conditions” [30] to
activate the intended behavior; and (iii) the malware may
target a particular browser. Nevertheless, we found that SAFE-
DEOBS successfully processed our malware corpus and greatly
reduced the complexity of the code contained within.

V. CONCLUSION

In this paper we present SAFE-DEOBS, a static analyzer
for deobfuscating JavaScript malware. While none of the
techniques that we propose are particularly novel in their
own right—indeed, Garba and Favaro [16] also proposed
“deobfuscation by optimization”—little work has been pub-
lished on applying these techniques to JavaScript malware. We
have demonstrated SAFE-DEOBS’ utility by applying it to a
large corpus of real-world malware, and shown that it makes
for a useful addition to a malware analyst’s toolset. SAFE-
DEOBS is open-source and available to malware analysts at
https://github.com/DSTCyber/safe-deobs.

REFERENCES

[1] W3Techs, “Usage statistics of JavaScript on websites,”
https://w3techs.com/technologies/details/cp-javascript,
2019.

[2] Stack Overflow, “Developer survey results,” https://
insights.stackoverflow.com/survey/2019, 2019.

[3] TIOBE, “TIOBE index for November 2019,” https://
www.tiobe.com/tiobe-index, Nov. 2019.

[4] Github, “The state of the Octoverse,” https://octoverse.
github.com, 2019.

[5] Module Counts, “Module counts,” http://www.
modulecounts.com, 2019.

[6] S. Groß, “CVE-2019-11707,” May 2019.
[7] A. Jordan, F. Gauthier, B. Hassanshahi, and D. Zhao,

“Unacceptable behavior: Robust PDF malware detection
using abstract interpretation,” in Proceedings of the 14th
ACM SIGSAC Workshop on Programming Languages
and Analysis for Security, ser. PLAS’19, 2019.

[8] Trend Micro, “JavaScript malware in spam spreads ran-
somware, miners, spyware, worm,” Online, Jan. 2019.

[9] W. Xu, F. Zhang, and S. Zhu, “The power of obfuscation
techniques in malicious JavaScript code: A measurement
study,” in 2012 7th International Conference on Mali-
cious and Unwanted Software, Oct. 2012.

[10] G. Lu and S. Debray, “Automatic simplification of ob-
fuscated JavaScript code: A semantics-based approach,”
in Proceedings of the 2012 IEEE Sixth International
Conference on Software Security and Reliability, ser.
SERE ’12, 2012.

[11] A. Fass, R. P. Krawczyk, M. Backes, and B. Stock,
“JAST: Fully syntactic detection of malicious (obfus-
cated) JavaScript,” in Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, 2018.

[12] A. Fass, M. Backes, and B. Stock, “HideNoSeek: Cam-
ouflaging malicious JavaScript in benign ASTs,” in
Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’19,
2019.

[13] H. Lee, S. Won, J. Jin, J. Cho, and S. Ryu, “SAFE:
Formal specification and implementation of a scalable
analysis framework for ECMAScript,” in FOOL 2012:
19th International Workshop on Foundations of Object-
Oriented Languages.

[14] J. Park, Y. Ryou, J. Park, and S. Ryu, “Analysis of
JavaScript web applications using SAFE 2.0,” in 2017
IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), May 2017.

[15] M. Bazon, “UglifyJS,” http://lisperator.net/uglifyjs, 2018.
[16] P. Garba and M. Favaro, “SATURN – software deob-

fuscation framework based on LLVM,” in Proceedings
of the 3rd ACM Workshop on Software Protection, ser.
SPRO’19, 2019.

[17] M. Dalla Preda, M. Madou, K. De Bosschere, and
R. Giacobazzi, “Opaque predicates detection by abstract
interpretation,” in Proceedings of the 11th International
Conference on Algebraic Methodology and Software
Technology, ser. AMAST’06, 2006.

[18] Mozilla Developer Network, “with statement,”
https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Statements/with, Mar. 2020.

[19] ——, “eval,” https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global Objects/eval, May
2020.

[20] K. Rieck, T. Krueger, and A. Dewald, “Cujo: Efficient
detection and prevention of drive-by-download attacks,”
in Proceedings of the 26th Annual Computer Security
Applications Conference, ser. ACSAC ’10, 2010.

[21] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert,
“ZOZZLE: Fast and precise in-browser JavaScript mal-
ware detection,” in Proceedings of the 20th USENIX
Conference on Security, ser. SEC’11, 2011.

[22] A. Fass, M. Backes, and B. Stock, “JSTAP: A static pre-
filter for malicious JavaScript detection,” in Proceedings
of the 35th Annual Computer Security Applications Con-
ference, ser. ACSAC ’19, 2019.

[23] J. W. Stokes, R. Agrawal, G. McDonald, and
M. Hausknecht, “ScriptNet: Neural static analysis for
malicious JavaScript detection,” 2019.

[24] V. Raychev, M. Vechev, and A. Krause, “Predicting
program properties from “big code”,” in Proceedings of
the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’15,
2015.

[25] M. N. Wegman and F. K. Zadeck, “Constant propagation
with conditional branches,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 2, Apr. 1991.

[26] H. Petrak, “Javascript malware collection,” https://github.
com/HynekPetrak/javascript-malware-collection, 2019.

[27] P. Booth, “escomplex,” https://github.com/escomplex/
escomplex, 2017.

[28] T. J. McCabe, “A complexity measure,” IEEE Trans.
Softw. Eng., vol. 2, no. 4, pp. 308––320, Jul. 1976.

[29] M. H. Halstead, Elements of Software Science (Operating
and Programming Systems Series). USA: Elsevier
Science Inc., 1977.

[30] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song,
and H. Yin, Automatically Identifying Trigger-based Be-
havior in Malware. Boston, MA: Springer US, 2008,
pp. 65–88.

https://github.com/DSTCyber/safe-deobs
https://w3techs.com/technologies/details/cp-javascript
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index
https://octoverse.github.com
https://octoverse.github.com
http://www.modulecounts.com
http://www.modulecounts.com
http://lisperator.net/uglifyjs
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/escomplex/escomplex
https://github.com/escomplex/escomplex

	Introduction
	Background and Related Work
	Related Work

	Design and Implementation
	Preprocessing
	Deobfuscation Passes
	Constant Folding
	Constant Propagation
	Dead-branch Removal
	Function Inlining
	String Decoding
	Variable Renaming

	Evaluation
	Case Study
	Generalizability

	Conclusion

