
Make out like a (Multi-Armed) Bandit: Improving the Odds of

Fuzzer Seed Scheduling with T-Scheduler

Simon Luo
The University of New South Wales

Australia
simon.luo@unsw.edu.au

Adrian Herrera
Australian National University

Australia

Paul Quirk
Michael Chase

Defence Science & Technology Group
Australia

Damith C. Ranasinghe
University of Adelaide

Australia

Salil S. Kanhere
The University of New South Wales

Australia

ABSTRACT

Fuzzing is an industry-standard software testing technique that
uncovers bugs in a target program by executing it with mutated
inputs. Over the lifecycle of a fuzzing campaign, the fuzzer ac-
cumulates inputs inducing new and interesting target behaviors,
drawing from these inputs for further mutation and generation of
new inputs. This rapidly results in a large pool of inputs to select
from, making it challenging to quickly determine the “most promis-
ing” input for mutation. Reinforcement learning (RL) provides a
natural solution to this seed scheduling problem—a fuzzer can dy-

namically adapt its selection strategy by learning from past results.
However, existing RL approaches are (a) computationally expensive
(reducing fuzzer throughput), and/or (b) require hyperparameter
tuning (reducing generality across targets and input types). To this
end, we propose T-Scheduler, a seed scheduler built upon multi-
armed bandit theory to automatically adapt to the target. Notably,
our formulation does not require the user to select or tune hyper-
parameters and is therefore easily generalizable across different
targets. We evaluate T-Scheduler over 35 CPU-yr fuzzing effort,
comparing it to 11 state-of-the-art schedulers. Our results show that
T-Scheduler improves on these 11 schedulers on both bug-finding
and coverage-expansion abilities.

CCS CONCEPTS

• Security and privacy→ Software and application security;
• Computing methodologies→Machine learning.

KEYWORDS

Fuzzing, Software Testing, Thompson Sampling, Reinforcement
Learning, Multi-Armed Bandits
ACM Reference Format:

Simon Luo, Adrian Herrera, Paul Quirk, Michael Chase, Damith C. Ranas-
inghe, and Salil S. Kanhere. 2024. Make out like a (Multi-Armed) Ban-
dit: Improving the Odds of Fuzzer Seed Scheduling with T-Scheduler.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AsiaCCS ’24, July 01–05, 2024, Singapore

© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

In Proceedings of The 19th ACM ASIA Conference on Computer and Com-

munications Security (AsiaCCS ’24). ACM, New York, NY, USA, 17 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

“Make out like a bandit”. Idiom. To make a large profit.

Merriam-Webster Dictionary

Fuzzing is a software testing technique for automatically finding
bugs and vulnerabilities in a target program. Fuzzers find bugs by
mutating inputs to induce new behavior in the target. Intuitively,
mutated inputs are more likely to exercise corner cases in the tar-
get’s behaviors, leading to bugs. While most of these mutations do
not lead to anything interesting, there remains a chance that the
mutated input induces new and interesting target behaviors.

Intelligently selecting which inputs to mutate is critical for max-
imizing fuzzer effectiveness; inputs more likely to uncover new
behaviors should be prioritized for mutation. This prioritization of
inputs is known as seed scheduling1 [27, 40]. Seed schedulers typi-
cally use heuristics to determine an input’s position in the fuzzer’s
queue. In a coverage-guided greybox fuzzer—the most common
type of fuzzer—seed scheduling can be driven by a combination of:
(i) code coverage (inputs leading to new code uncover new behav-
iors); (ii) input size (smaller inputs are faster to mutate); (iii) exe-
cution time (inputs with shorter execution time mean more fuzzer
iterations); (iv) the number of times the input has been previously
selected (avoiding local optima); and (v) similarity with other inputs
(improving diversity). However, seed scheduling is challenging be-
cause of a combination of the (a) large number of inputs generated
via mutation (and thus requiring prioritization), (b) large search
space of the target, and (c) computational requirements (e.g., CPU
time, memory, and storage).

Machine learning (ML)—in particular, reinforcement learning
(RL)—is commonly applied to solve challenges in fuzzing [9, 11,
12, 16, 20, 25, 31, 32, 39, 40, 42, 50]. Notably, RL has been used to
adaptively learn seed scheduling strategies more likely to lead to
increased code coverage. In turn, this increases the likelihood of
uncovering new bugs (after all, one cannot find bugs in code that is
never executed). However, integrating RL into fuzzing introduces
two challenges: performance tradeoffs and hyperparameter tuning.

1We use the term “seed scheduling”, rather than “seed selection”, to disambiguate it
from the (offline) process of selecting an initial set of inputs to bootstrap the fuzzer.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

AsiaCCS ’24, July 01–05, 2024, Singapore Luo et al.

Performance tradeoffs. A fuzzer’s iteration rate is the number of
inputs the fuzzer executes per unit of time; the faster the fuzzer’s it-
eration rate, the quicker the fuzzer can discover new and interesting
behaviors. However, balancing performance and “cleverness” in se-
lecting the best input to mutate is difficult. Moreover, RL algorithms
require computational resources to train and evaluate, impacting a
fuzzer’s iteration rate. Naïvely introducing RL into a fuzzer (notably,
for seed scheduling) can increase run-time overhead without any
performance improvement. For example, we found AFL-Hier [40]
(a fuzzer using RL for seed scheduling) introduced >2× overhead
over AFL++’s [15] heuristic-based scheduler without any improve-
ment in fuzzing outcomes.

Hyperparameter tuning. RL algorithms use hyperparameters to
configure their learning process. The number of hyperparameters
depends on the RL algorithm used. For example, AFLFast [7], Eco-
Fuzz [46], AFL-Hier [40], and MobFuzz [48] (fuzzers using RL in
their seed schedulers) each have two hyperparameters. Hyperpa-
rameters must be set before learning (and hence fuzzing) begins.
However, empirically selecting optimal hyperparameter values is
time-consuming and difficult to generalize; optimal values are likely
to vary across targets and input formats. Suboptimal hyperparame-
ter values reduce fuzzing performance.

We propose an RL approach that addresses these challenges and
improves fuzzing outcomes. Our approach models seed scheduling
as a multi-armed bandit (MAB) problem, which we solve using
Thompson sampling. Thompson sampling allows us to adaptively
and efficiently model the probability of the fuzzer uncovering new
and interesting behaviors. In doing so, the fuzzer can make more
intelligent seed scheduling decisions with (a) no hyperparameters to
tune, (b) theoretical optimality guarantees [2], and (c) constant-time
overheads. Our approach also uses a self-balancing mechanism to
prioritize inputs covering rare paths and newly-discovered code.

We implement our RL-based seed scheduler, T-Scheduler, in
AFL++ (the current state-of-the-art coverage-guided greybox fuzzer)
and evaluate it on 35 programs across twowidely-used fuzzer bench-
marks (Magma [17] and FuzzBench [28]). Our evaluation shows
that T-Scheduler consistently improves on 11 state-of-the-art seed
schedulers on 26 programs. We contribute:

• A theoretical formulation of the seed scheduling problem.

We formulate seed scheduling as a MAB problem. Our formu-
lation allows the fuzzer to prioritize inputs corresponding to
newly-discovered target behaviors, based on learning the histori-
cal success of past seed inputs (Sections 3.1 to 3.5).
• An RL-based seed scheduler with no hyperparameters. We
design and implement T-Scheduler, based on solving our MAB
problem using Thompson sampling. Using Thompson sampling
means that we benefit from the inherent theoretical guarantee
that model errors grow sublinearly—important for facilitating
long fuzzing campaigns. Moreover, our implementation has no
hyperparameters, making it more generalizable to different tar-
gets and input formats. We integrate our implementation into
AFL++ (Section 3.5).
• An effective and generalizable seed scheduler.We evaluate
T-Scheduler by fuzzing real-world programs (>35 CPU-yr). Our

Execute &
monitorMutate input(e) Select

input
(c) Coverage map

(b) Queue

Crash
detected?

(d) Is
interesting?

Save for
analysisDiscard

Update

(f) Filtering
& favoring

(a) Seeds

Figure 1: Overview of Greybox Fuzzing.

approach outperforms current state-of-the-art schedulers across
both bug-finding and coverage-expansion metrics (Section 4).
• Analysis of seed scheduler costs. Seed schedulers must care-
fully balance overhead costs and precision. To this end, we em-
pirically analyze the cost of existing schedulers to understand
their impact on fuzzing outcomes (Section 4.4).

We release our implementation and results at https://github.com/
asiaccs2024-t-scheduler.

2 BACKGROUND

2.1 Fuzzing

Fuzz testing (“fuzzing”) is a dynamic analysis for uncovering bugs in
software. In a security context, fuzzers have been wildly successful
at discovering tens of thousands of security-critical vulnerabilities
in widely-used code [10]. Bugs are found by (rapidly) subjecting
a target program to automatically-generated inputs. The fuzzer
generates inputs to expose and explore corner cases in the target
not considered by the developer. Intuitively, it is in these corner
cases where bugs are most likely to lie.

Figure 1 illustrates the fuzzing process. A fuzzing campaign
begins with curating a corpus of “well-formed” inputs. These in-
puts are commonly exemplar input data accepted by the target
(Fig. 1(a)) [18, 30]. At run time, the fuzzer maintains a queue—
initially populated from this curated corpus—from which an input
is selected to fuzz (Fig. 1(b)). The selected input is mutated and fed
into the target to expose corner cases in program behavior. How
does the fuzzer select these inputs?

Greybox fuzzers use lightweight instrumentation to track code
executed (or “covered”) by the target (in contrast, blackbox fuzzers
have no internal view of the target). The fuzzer records code cover-
age in a coverage map, which tracks the number of times a particular
coverage element—typically, an edge in the target’s control-flow
graph (CFG)—is executed (Fig. 1(c)). By tracking code coverage,
the fuzzer can determine if the mutated input triggers new target
behaviors. Inputs triggering new behaviors are saved back into the
queue; otherwise, the input is discarded (Fig. 1(d)). This guides the
fuzzer to prioritize inputs leading to new program behaviors (as
captured by the instrumentation). Selecting and prioritizing inputs
for mutation is handled by the seed scheduler (Fig. 1(e)).

https://github.com/asiaccs2024-t-scheduler
https://github.com/asiaccs2024-t-scheduler

Make out like a (Multi-Armed) Bandit: Improving the Odds of Fuzzer Seed Scheduling with T-Scheduler AsiaCCS ’24, July 01–05, 2024, Singapore

2.2 Seed Scheduling

An efficient seed scheduler (the blue box in Fig. 1) must satisfy
two competing constraints. First, the seed scheduler must select
the most-promising input for mutation; i.e., the input most likely to
cover new program behaviors. Second, it must make this selection
from a (potentially) large queue with minimal run-time overhead.
AFL-based [47] fuzzers solve this problem by bounding the input
queue to a fixed size via an input filtering and favoring phase [43].

Input filtering and favoring. The fuzzer only retains inputs that
induce new and interesting behaviors in the target; e.g., an input
that covers a new element in the coverage map. These inputs are
made available for future mutations, potentially uncovering more
new behaviors. AFL “favors” an input if it is the fastest and smallest
input for any of the coverage map elements [7] (Fig. 1(f)). Thus,
tracking favored inputs gives the fuzzer a minimal set of inputs
(that are both small and fast) covering all of the elements seen
in the coverage map so far (approximating a weighted minimum

set cover, with size and speed as weights [15]). Maintaining a set
of favored inputs implicitly reduces the seed scheduling problem
from an unbounded number of inputs (the union of the initial seed
corpus and the inputs generated so far) to a bounded number of
inputs: the number of favored inputs; i.e., the coverage map’s size.

After filtering and favoring, the scheduler has a bounded number of
inputs fromwhich to select an input to fuzz. From this, the scheduler
selects the “best” input to mutate. For example, AFL selects an input
based on a score calculated using a set of heuristics. These heuris-
tics calculate a performance score based on an input’s: (i) coverage;
(ii) execution time (faster inputs are preferred); (iii) “depth” (i.e., the
number of inputs mutated to reach the given input); and (iv) the
fuzzer’s run time (newer inputs are prioritized). A power sched-

ule [7, 15] then distributes fuzzing time across inputs by scaling the
performance score based on the number of times the input has been
selected, biasing fuzzing time to less-fuzzed inputs. Higher energy
means the fuzzer spends more time mutating the corresponding
(favored) input.

Notably, AFL’s heuristics are based on intuition and experimenta-
tion. Other fuzzers (e.g., EcoFuzz [46],AFL-Hier [40], MobFuzz [48],
and K-Scheduler [35]) also rely on hyperparameters that must be
tuned per target to achieve optimal results. In contrast, our approach
(described in Section 3) replaces these heuristics with an RL algo-
rithm that uses run-time statistics to dynamically learn and adapt
a seed schedule. Moreover, our approach has no hyperparameters
to tune, leading to more efficient and informed input selection.

2.3 Reinforcement Learning

Reinforcement learning (RL) is an ML paradigm that trains an
agent by observing changes in state and rewarding the selected
actions [36]. The agent aims to select the best action to maximize
the cumulative reward. However, the expected reward for each
action is often unknown and must be learned dynamically via
experimentation. This experimentation leads to a trade-off between
exploiting what is already known and exploring territory.

An RL algorithm is typically defined in terms of states, actions,
and rewards. The state is a set of variables describing the environ-
ment. Based on the current state, the agent (a) selects an action to

perform, and (b) receives feedback on its selection in the form of a
reward. The agent’s objective is thus to maximize the cumulative
reward over a given time.

These concepts apply naturally to fuzzing. In particular, the
fuzzer’s seed scheduler must select an input (to mutate) from a
pool of constantly-changing possibilities. Ideally, this selection
maximizes the discovery of new code, or (ideally) a bug. The seed
scheduler must balance exploring the input queue and exploiting

the input uncovering the most code. This requires a careful trade-
off between making intelligent input prioritization decisions and
maintaining the fuzzer’s iteration rate. We satisfy this trade-off by
formulating seed scheduling as a multi-armed bandit.

2.3.1 Multi-Armed Bandit. Themulti-armed bandit (MAB) is a well-
explored RL problem focusing on the trade-off between exploration
and exploitation [24]. Given a state, the agent selects an action 𝑎𝑘 ∈
A at each time step 𝑡 ∈ [1, . . . ,𝑇]. The agent’s goal is to maximize
the cumulative reward (by performing a sequence of actions) over𝑇 .

The classic MAB involves 𝐾 slot machines (“bandits”), where
each 𝑘 ∈ [1, . . . , 𝐾] has an unknown probability 𝜃𝑘 of paying out
when played. At each time step 𝑡 , the player (i.e., agent) selects a
slot machine to play. Once played, the player is either rewarded
with a payout (with probability 𝜃𝑘) or receives nothing (with prob-
ability 1 − 𝜃𝑘). Naturally, any rational player would focus on the
bandit paying out the most (thus achieving their goal of maximizing
the cumulative reward). Unfortunately, this information is unknown

to the player. Consequently, the player must trade-off between ex-

ploiting the bandit with the (current) highest expected payout and
exploring different bandits to learn more about the probability 𝜃𝑘
(in the hope of finding a higher payout). What is the best strategy
for selecting between exploration and exploitation?

Thompson sampling [37] is a popular approach for addressing
this exploration/exploitation trade-off. This popularity is due to
simplicity, fast execution time, and optimality guarantees (ensuring
errors grow sublinearly over time [2]). Consequently, we adopt
Thompson sampling in T-Scheduler, our RL-based seed scheduler.

3 APPROACH

Our seed scheduler, T-Scheduler, formulates greybox fuzzing as a
Beta-Bernoulli bandit, which we solve with Thompson sampling.
We first provide a high-level description of the T-Scheduler algo-
rithm (Section 3.2) and a motivating example (Section 3.2.1), fol-
lowed by a mathematical formulation of our Beta-Bernoulli bandit
model (Sections 3.3 to 3.5).

3.1 Notation and Definitions

A fuzzer measures its progress fuzzing target P in a coverage
map C(P, 𝜄) ∈ N𝐾 of size 𝐾 . Typically, each feature 𝑥 ∈ C(P, 𝜄)
records the number of times a particular edge in the target’s control-
flow graph (CFG)2 is executed by an input 𝜄 ∈ I, where I is the set
of inputs representing the union of the initial corpus and the set of
inputs generated by the fuzzer. We refer to this count as a hit count
(given by the function hit_count).

Feature rareness prioritizes features covered less by I. We adopt
the definition by Wang et al. [40], where feature rareness is the
2Some fuzzers eschew edge coverage for other coverage metrics (e.g., context-sensitive
edge or data flow). Our approach is agnostic to the underlying coverage metric.

AsiaCCS ’24, July 01–05, 2024, Singapore Luo et al.

inverse of 𝑥 ’s hit count. Feature hit counts and rareness are defined
for each feature in the coverage map and the inputs generated so
far. These definitions enable a seed scheduler that prioritizes both
newly-discovered and hard-to-reach code.

3.2 The T-Scheduler Algorithm

Algorithm 1: T-Scheduler.
1 𝜶 ← {1 | 𝑘 ∈ [1, . . . , 𝐾] }
2 𝜷 ← { 1 | 𝑘 ∈ [1, . . . , 𝐾] }
3 Function UpdatePosterior(C(P, 𝜄) , 𝜶 , 𝜷)
4 for 𝑘, 𝑥 ∈ C(P, 𝜄) do
5 if 𝑥 ≠ 0 then

6 if IsInteresting(𝜄) then
7 𝛼𝑘 ← 𝛼𝑘 + 1
8 else

9 𝛽𝑘 ← 𝛽𝑘 + 1

10 return 𝜶 , 𝜷

11 Function SelectInput(𝜶 , 𝜷)
12 for 𝑘 ← [1, . . . , 𝐾] do
13 𝜃𝑘 ∼ Beta(𝛼𝑘 , 𝛽𝑘)
14 𝜓𝑘 ∼ Beta(𝛼𝑘 + 𝛽𝑘 , 𝛼2

𝑘
)

15 𝑎𝑡 ← arg max[𝜓1𝜃1, . . . ,𝜓𝐾𝜃𝐾]
16 I (𝑡+1) ← FavoredInputs(𝑎𝑡)
17 return I (𝑡+1)

We present the T-Scheduler algorithm in Algorithm 1. It con-
sists of two functions: UpdatePosterior and SelectInput.

The UpdatePosterior function—called each time an input 𝜄 is
executed—uses two 𝐾-length vectors—𝜶 and 𝜷 (Lines 7 and 9)—to
store the number of times a coverage map feature is hit or missed,
respectively. Each element 𝛼𝑘 and 𝛽𝑘 (where 𝑘 ∈ [1, . . . , 𝐾]) rep-
resents the number of times 𝜄 hits or misses 𝑥 ∈ C(P, 𝜄). These
vectors are used to compute a probability distribution for each cov-
erage map feature, modeling the probability of an input inducing
new behaviors in P.

The SelectInput function is called when the queue has been
exhausted. It samples 𝜽 = [𝜃1, . . . , 𝜃𝐾] from 𝐾 Beta distributions
(Line 13) to determine the “best” input to fuzz (see Section 3.3).
However, using only 𝜽 leads the fuzzer to repeatedly select the
same inputs, because it implicitly penalizes rarely-covered fea-
tures in the coverage map. Thus, we introduce a correction fac-

tor 𝝍 = [𝜓1, . . . ,𝜓𝐾] (Line 14) based on feature rareness to penalize
frequently-covered coverage map features (see Section 3.4).

Finally, the next input to fuzz is chosen from FavoredInputs

using 𝜃𝑘 and 𝜓𝑘 (Lines 15 to 16; see Section 3.5). FavoredInputs
stores a single “best” input corresponding to each feature in the
coverage map. Per Section 2.2, the fuzzer determines this input by a
combination of execution time, input size, and the number of times
the input has been fuzzed.

3.2.1 Motivating Example. Weuse the example in Fig. 2 to illustrate
T-Scheduler’s approach. T-Scheduler is an adaptive scheduler,
meaning the probability of selecting a given input (for mutation)
changes as the scheduler receives coverage feedback from the fuzzer.
In this example, coverage feedback is used to update 𝛼 (Line 7
in Algorithm 1) and 𝛽 (Line 9), storing the positive and negative

1 void foo(int a,

int b) {

2 if (a > 10)

3 if (a > 20)

4 if (b > 10)

5 bug();

6 }

(a) The program. The

parameters a and b are
derived from user in-

put.

Line 2

𝑡 = 1 (𝑎 ← 15, 𝑏 ← 0)
𝑡 = 2 (𝑎 ← 25, 𝑏 ← 0)
𝑡 = 3 (𝑎 ← 0, 𝑏 ← 15)
𝑡 = 4 (𝑎 ← 0, 𝑏 ← 25)
𝑡 = 5 (𝑎 ← 25, 𝑏 ← 5)
𝑡 = 6 (𝑎 ← 25, 𝑏 ← 25)

Line 3

𝑡 = 0, 𝛼 = 1, 𝛽 = 1, 𝑝 = 0.25
𝑡 = 1, 𝛼 = 2, 𝛽 = 1, 𝑝 = 0.29
𝑡 = 2, 𝛼 = 3, 𝛽 = 1, 𝑝 = 0.28
𝑡 = 3, 𝛼 = 3, 𝛽 = 1, 𝑝 = 0.30
𝑡 = 4, 𝛼 = 3, 𝛽 = 1, 𝑝 = 0.31
𝑡 = 5, 𝛼 = 3, 𝛽 = 2, 𝑝 = 0.29
𝑡 = 6, 𝛼 = 4, 𝛽 = 2, 𝑝 = 0.27

Line 4

𝑡 = 0, 𝛼 = 1, 𝛽 = 1, 𝑝 = 0.25
𝑡 = 1, 𝛼 = 1, 𝛽 = 1, 𝑝 = 0.21
𝑡 = 2, 𝛼 = 2, 𝛽 = 1, 𝑝 = 0.25
𝑡 = 3, 𝛼 = 2, 𝛽 = 1, 𝑝 = 0.26
𝑡 = 4, 𝛼 = 2, 𝛽 = 1, 𝑝 = 0.28
𝑡 = 5, 𝛼 = 2, 𝛽 = 2, 𝑝 = 0.24
𝑡 = 6, 𝛼 = 3, 𝛽 = 2, 𝑝 = 0.25

Line 5

𝑡 = 0, 𝛼 = 1, 𝛽 = 1, 𝑝 = 0.25
𝑡 = 1, 𝛼 = 1, 𝛽 = 1, 𝑝 = 0.21
𝑡 = 2, 𝛼 = 1, 𝛽 = 1, 𝑝 = 0.19
𝑡 = 3, 𝛼 = 1, 𝛽 = 1, 𝑝 = 0.20
𝑡 = 4, 𝛼 = 1, 𝛽 = 1, 𝑝 = 0.21
𝑡 = 5, 𝛼 = 1, 𝛽 = 1, 𝑝 = 0.24
𝑡 = 6, 𝛼 = 2, 𝛽 = 1, 𝑝 = 0.27

Line 6

𝑡 = 0, 𝛼 = 1, 𝛽 = 1, 𝑝 = 0.25
𝑡 = 1, 𝛼 = 2, 𝛽 = 1, 𝑝 = 0.29
𝑡 = 2, 𝛼 = 3, 𝛽 = 1, 𝑝 = 0.28
𝑡 = 3, 𝛼 = 3, 𝛽 = 2, 𝑝 = 0.24
𝑡 = 4, 𝛼 = 3, 𝛽 = 3, 𝑝 = 0.21
𝑡 = 5, 𝛼 = 3, 𝛽 = 4, 𝑝 = 0.24
𝑡 = 6, 𝛼 = 3, 𝛽 = 5, 𝑝 = 0.21

a ≤ 10
a > 10

a > 20

a ≤ 20

a ≤ 20

b > 10

(b) CFG showing the changing parame-

ters 𝛼𝑘 and 𝛽𝑘 at each time step 𝑡 . The

mean probability for each time step is

shown as 𝑝.

Figure 2: An example showing how T-Scheduler updates its

parameters after each input is executed. Six different values

for a and b (corresponding to six different inputs) are shown

in the root node. The parameter 𝛼 is incremented when the

input discovers new program behavior, otherwise 𝛽 is incre-

mented. The probability 𝑝𝑘 is the normalized mean of the

Beta distribution in Line 13 in Algorithm 1 using Eq. (1).

feedback of past scheduling decisions, respectively. The scheduler
uses the updated parameters 𝛼 and 𝛽 to assign a probability for
selecting an input (Line 13). We show the mean of this probability
distribution

𝑝𝑘 =
E[Beta(𝛼𝑘 , 𝛽𝑘)]∑𝐾
𝑘=1 E[Beta(𝛼𝑘 , 𝛽𝑘)]

, (1)

because of the difficulty visualizing 𝜃𝑘 in Fig. 2. Importantly, Algo-
rithm 1 does not need to compute 𝑝𝑘 and is only used to visualize
how the mean of the probability distribution changes over time.

Figure 2 uses six example inputs to show how the parameters
are updated. Inputs discovering new program behaviors are stored
in the corresponding node and 𝑝 is the probability of the input
being selected by the scheduler. This assumes that prior inputs
that discovered new program behaviors are more likely to discover
new program behaviors. At 𝑡 = 1, the input covers lines 3 and 6
(Section 3.2.1) for the first time, so 𝛼 is incremented and 𝑝 increases.
At 𝑡 = 2, the input covers lines 3, 4, and 6. Line 4 is covered for the
first time and 𝛼 is incremented for lines 3, 4, and 6. Notably, 𝑝 in
line 4 increases but 𝑝 decreases at lines 3 and 6 because we favor
rarer paths. The input covers line 6 at 𝑡 = 3 and 𝑡 = 4. Line 6 has
already been covered, so 𝛽 is incremented and 𝑝 decreases (because
we penalize inputs that do not uncover new program behaviors).
Similarly, at 𝑡 = 5 the input covers lines 3, 4, and 6, which have also
been covered by previous inputs. Thus, 𝑝 decreases at these lines

Make out like a (Multi-Armed) Bandit: Improving the Odds of Fuzzer Seed Scheduling with T-Scheduler AsiaCCS ’24, July 01–05, 2024, Singapore

0 250 500 750 10000.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
lin

g
Pr

ob
ab

ilit
y

(a) Greedy.

0 250 500 750 10000.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
lin

g
Pr

ob
ab

ilit
y

(b) T-Scheduler.

0 250 500 750 1000
0.0

0.1

0.2

0.3

Av
er

ag
e

Re
gr

et

(c) Regret.

Figure 3: An example scheduler demonstrating the probabil-

ity of an input being selected over 1,000 iterations (the 𝑥-axis

is iteration count). The regret quantifies the error by taking

the difference between the optimal decision and the input

selected. The inputs 𝜄1, 𝜄2, and 𝜄3 have latent probabilities

of 0.7, 0.8, and 0.9, respectively. The greedy algorithm has a

constant regret, while the T-Scheduler algorithm’s regret

approaches zero over time. Highlight colors reflect those in

the plots.

while 𝑝 increases for lines 2 and 6. Finally, line 5 is covered for the
first time at 𝑡 = 6. This results in 𝛼 increasing at lines 3, 4, and 5
and 𝑝 changing disproportionally to favor rarer paths.

The scheduler selects an input to executed based on the proba-
bility that mutating the input will lead to new program behaviors.
This probability is unknown. Thus, inputs with a higher probability
for discovering new program behaviors must be estimated and pri-
oritized by the scheduler. Figure 3 illustrates the impact different
scheduling algorithms have on these estimates. Here, we assume
that a scheduler has three inputs to select from—𝜄1, 𝜄2, and 𝜄3—with
probabilities 0.7, 0.8, and 0.9 that a mutation will discover new pro-
gram behavior (which is unknown and needs to be estimated by
the scheduler in a fuzzing campaign), respectively to demonstrate
the behavior of the algorithm.3 Here, we can see input 𝜄3 should
be selected because it has the highest probability to discover new
program behavior. But the scheduler does not know these values
and is required to estimate them to assign a scheduling probability
to each input. Figures 3a and 3b show the convergence of 𝑝 for
two scheduling approaches—a greedy algorithm and T-Scheduler—
when selecting inputs using the scheduling probabilities (𝑝 or 𝜃).
T-Scheduler allows for sub-optimal decisions at a given time by
sampling from a distribution (Line 13 in Algorithm 1) meaning
the input with the highest 𝑝 is not always selected. These sub-
optimal decisions allow the model to “explore” early on in the
fuzzing campaign and “exploit” inputs when it has more informa-
tion. The greedy approach shown in Fig. 3a always tries to select the
highest scheduling probability which does not lead to the optimal
solution. Figure 3c illustrates the regret of T-Scheduler converging
to zero over time leading to the optimal solution while a constant re-
gret remains for the greedy approach. In this example, this can only
be achieved if the scheduler always picks 𝜄3. Current state-of-the-art
schedulers (e.g., AFLFast [7], Entropic [5], and TortoiseFuzz [43])
use a greedy approach to make decisions. T-Schedulermakes more
optimal decisions (compared to greedy algorithms), particularly in
long fuzzing campaigns.

3In a fuzzing campaign these probabilities change as new program behaviors are
discovered.

With the T-Scheduler algorithm presented, we now turn our
attention to the probabilistic modeling that underpins our approach.

3.3 Adapting the Beta-Bernoulli Bandit

Thompson sampling frames exploration and exploitation as a Bayesian
posterior estimation, choosing an action that maximizes a reward
based on a randomly-drawn prior belief (Section 2.3.1). We assume
that information derived from previous inputs can be used to im-
prove input scheduling in the future. The reward function provides
feedback to the fuzzer after each input 𝜄 is executed. In particu-
lar, the fuzzer is (positively) rewarded for discovering new target
behaviors, and penalized otherwise.

We begin our formulation with a𝐾-armed bandit; i.e., there are𝐾
actions for the fuzzer to choose from. Here, 𝐾 is the size of C(P, 𝜄),
and each entry of the coverage map corresponds to a favored input
in a many-to-one relationship (Section 2.2). We define a fuzzing
campaign with respect to a time step 𝑡 ∈ [1, . . . ,𝑇], where 𝑇 is the
length of the campaign (i.e., the number of executed inputs). Each
input 𝜄 (𝑡) at time step 𝑡 will produce a coverage map C(P, 𝜄) (𝑡) .
After performing action 𝑘 ∈ [1, . . . 𝐾] the fuzzer is rewarded by:

𝑟
(𝑡)
𝑘

:=

{
1, if 𝑥 (𝑡)

𝑘
≠ 0 and 𝜄 (𝑡) is interesting,

0, if 𝑥 (𝑡)
𝑘

≠ 0,
(2)

where 𝑥 (𝑡)
𝑘
∈ C(P, 𝜄) (𝑡) is the coverage map feature at index 𝑘 .

For each time step 𝑡 the reward is represented as the vector r(𝑡) =
[𝑟 (𝑡)1 , . . . , 𝑟

(𝑡)
𝐾
]. The fuzzer is rewarded for inducing interesting

behaviors in the target (e.g., uncovering new code). Intuitively, this
ensures the scheduler selects inputs that are more likely to induce
new behaviors in P.

3.3.1 Estimating Probabilities and Rewarding the Fuzzer. The prob-
ability that the fuzzer generates an input (by mutating the current
input) inducing new behaviors is 𝜽 = [𝜃1, . . . , 𝜃𝐾]. Importantly, 𝜽
is unknown and must be estimated over time through experimenta-
tion. Per Section 2.3, learning 𝜽 requires a careful balance between
exploration and exploitation to maximize the cumulative reward
over𝑇 . The estimated 𝜽 guides the seed scheduler to select the next
(best) input to fuzz.

We design the reward function in Eq. (2) such that 𝜃𝑘 (the poste-
rior distribution) can be estimated using the Beta-Bernoulli bandit.
In this setting, 𝜃𝑘 is the probability that the input induces new
behaviors in P, and is estimated by a Bernoulli distribution with
observations 𝑟 (𝑡)

𝑘
(the likelihood) and a Beta distribution over 𝜃 (𝑡)

𝑘
(the prior distribution); i.e.,

𝑟
(𝑡)
𝑘
∼ 𝑝 (𝑟 (𝑡)

𝑘
|𝜃 (𝑡)
𝑘
) = Bernoulli(𝜃 (𝑡)

𝑘
) (3)

and
𝜃
(𝑡)
𝑘
∼ 𝑝 (𝜃 (𝑡)

𝑘
;𝛼𝑘 , 𝛽

(𝑡)
𝑘
) = Beta(𝛼 (𝑡)

𝑘
, 𝛽
(𝑡)
𝑘
). (4)

The prior distribution is modeled as a Beta distribution with
parameters 𝜶 (𝑡) = [𝛼 (𝑡)1 , . . . , 𝛼

(𝑡)
𝐾
] and 𝜷 (𝑡) = [𝛽 (𝑡)1 , . . . , 𝛽

(𝑡)
𝐾
]

(Lines 7 and 9, Algorithm 1), while the parameters 𝛼 (0)
𝑘

and 𝛽 (0)
𝑘

are initialized to 1 at 𝑡 = 0 (Lines 1 and 2, Algorithm 1). The pa-
rameter 𝜶 − 1 represents the number of times each 𝑥 ∈ C(P, 𝜄)
has been covered (for all I executed so far) by an interesting input,

AsiaCCS ’24, July 01–05, 2024, Singapore Luo et al.

while 𝜷 − 1 represents the number of times each 𝑥 ∈ C(P, 𝜄) was
covered by input that was not considered interesting.

Using Bayes rule, the posterior distribution 𝑝 (𝜃 |𝑟 (𝑡)
𝑘
) is

𝑝 (𝜃 (𝑡)
𝑘
|𝑟 (𝑡)
𝑘
) =

𝑝 (𝑟 (𝑡)
𝑘
|𝜃 (𝑡)
𝑘
)𝑝 (𝜃 (𝑡)

𝑘
;𝛼 (𝑡)
𝑘
, 𝛽
(𝑡)
𝑘
)

𝑝 (𝑟 (𝑡)
𝑘
)

∝ 𝑝 (𝑟 (𝑡)
𝑘
|𝜃 (𝑡)
𝑘
)𝑝 (𝜃 (𝑡)

𝑘
;𝛼 (𝑡)
𝑘
, 𝛽
(𝑡)
𝑘
).

(5)

The prior distribution 𝑝 (𝜃 (𝑡)
𝑘

;𝛼 (𝑡)
𝑘
, 𝛽
(𝑡)
𝑘
) represents the distribu-

tion at the previous time step; i.e.,

𝑝 (𝜃 (𝑡)
𝑘

;𝛼 (𝑡)
𝑘
, 𝛽
(𝑡)
𝑘
) := 𝑝 (𝜃 (𝑡−1)

𝑘
|𝑟 (𝑡−1)
𝑘

), (6)

while the likelihood 𝑝 (𝑟 (𝑡)
𝑘
|𝜃 (𝑡)
𝑘
) takes into account the coverage

achieved at the current time step. Equation (6) provides a mech-
anism for the fuzzer to update its model to ensure it selects the
“best” seed. The recursive structure defined in Eqs. (5) and (6) means
the model is dependent on previously selected inputs. The fuzzer
continuously updates the model by receiving feedback from the
reward function (Eq. (2)) at each timestep. This approximates the
posterior distribution 𝑝 (𝜃 (𝑡)

𝑘
|𝑟 (𝑡)
𝑘
), which is now the probability

that a fuzzer-generated input will cover this feature in the coverage
map.

3.3.2 Improving Performance. Directly sampling from Eq. (5) to
compute 𝜽 is computationally expensive. However, using the Beta
distribution (which is a conjugate prior to the Bernoulli distribu-
tion) avoids expensive numerical computations (that are typical
in Bayesian inference), leading to simpler updates after each time
step. In particular, solving Eq. (5) with Eqs. (3) and (4) gives the
following update rule for the posterior distribution:

(𝛼 (𝑡)
𝑘
, 𝛽
(𝑡)
𝑘
) = (𝛼 (𝑡−1)

𝑘
, 𝛽
(𝑡−1)
𝑘

) + (𝑟 (𝑡)
𝑘
, 1 − 𝑟 (𝑡)

𝑘
) . (7)

This is the approach taken in UpdatePosterior (Algorithm 1): the
parameters 𝛼 (𝑡)

𝑘
and 𝛽 (𝑡)

𝑘
are updated incrementally (at each time

step) with each observation of success and failure, respectively. The
update rule has been illustrated in Fig. 2, where 𝛼𝑘 is incremented
for the path of the input if the input discovered new program
behavior, otherwise 𝛽𝑘 is incremented. For example, at 𝑡 = 1, input
covered lines 3 and 6 for the first time so 𝛼 was incremented for
both of these nodes, and at 𝑡 = 3, the input covered Line 6 but did
not discover new code coverage, so 𝑏𝑒𝑡𝑎 was incremented for Line
6.

Following these updates, Eq. (5) is sampled by drawing from a
Beta distribution with parameters 𝛼𝑘 and 𝛽𝑘 ,

𝜃
(𝑡)
𝑘
∼ 𝑝 (𝜃 = 𝜃

(𝑡)
𝑘
|𝑟 (𝑡+1)
𝑘

= 1) = Beta(𝛼 (𝑡)
𝑘
, 𝛽
(𝑡)
𝑘
), (8)

where 𝜃𝑘—the probability of covering feature 𝑥 ∈ C(P, 𝜄)—is de-
pendent on the inputs seen so far.

Unfortunately, using 𝜽 (at Line 13, Algorithm 1) to select the next
input will likely result in the fuzzer repeatedly selecting the same
few inputs. This is because incrementing 𝜶 in Eq. (7) rewards the
model, ultimately skewing the probability density function (PDF)
towards one and making it more likely that the fuzzer will select
this input. Similarly, incrementing 𝜷 penalizes the model, skewing
the PDF towards zero and making it less likely that the fuzzer will
select this input. However, this has the side-effect of penalizing

actions that are not selectable. We describe this issue and how we
correct for it in Section 3.4.

3.4 Rareness Correction

Section 3.3 introduced the standard MAB setting, where we assume
all 𝐾 actions are selectable. However, this is not the case in practice:
the fuzzer cannot select inputs corresponding to unexercised cov-
erage map features. Moreover, the update rule in Eq. (7) penalizes
rarely-covered features in C.

We use feature rareness to penalize frequently-covered coverage
map features, introducing a correction factor to account for the
update rule’s penalty. This ensures favored inputs corresponding
to less-covered features in the coverage map have a greater chance
of being selected, prioritizing newly-discovered and hard-to-reach
code. We apply this penalty using the chain rule on the joint prob-
ability between the reward at the next time step 𝑟 (𝑡+1)

𝑘
and the

probability of the fuzzer selecting an input covering feature 𝑘 , 𝜃 (𝑡)
𝑘

:

𝑝 (𝑟 (𝑡+1)
𝑘

= 1|𝜃 = 𝜃
(𝑡)
𝑘
) ∝ 𝑝 (𝜃 = 𝜃

(𝑡)
𝑘
|𝑟 (𝑡+1)
𝑘

= 1)𝑝 (𝑟 (𝑡+1)
𝑘

= 1), (9)

where 𝑟 (𝑡+1)
𝑘

is the predicted reward at the next time step.
Eq. (9) is a binary classification with dependent variables. Here,

the conditional probability with dependent variable 𝑟 (𝑡+1)
𝑘

= 1 is
drawn from Eq. (8), and the constraint for rareness applied by the
marginal probability of 𝑟 (𝑡+1)

𝑘
= 1 is

𝜓
(𝑡)
𝑘
∼ 𝑝 (𝑟 (𝑡+1)

𝑘
= 1) = Beta

(
𝛼
(𝑡)
𝑘
+ 𝛽 (𝑡)

𝑘
,

(
𝛼
(𝑡)
𝑘

)2
)
. (10)

The conditional probability 𝑝 (𝜃 (𝑡)
𝑘
|𝑟 (𝑡+1)
𝑘

= 1) represents the
probability action 𝑎𝑘 selects an 𝜄 that will discover new behaviors.
The marginal probability 𝑝 (𝑟 (𝑡+1)

𝑘
= 1) applies a constraint pe-

nalizing features in the coverage map with a high hit count, thus
prioritizing under-explored code. Eq. (11) shows this:

𝜙
(𝑡)
𝑘

= E[𝑝 (𝑟 (𝑡+1)
𝑘

= 1)] =
𝛼
(𝑡)
𝑘
+ 𝛽 (𝑡)

𝑘(
𝛼
(𝑡)
𝑘

)2
+ 𝛼 (𝑡)

𝑘
+ 𝛽 (𝑡)

𝑘

. (11)

For 𝛼𝑘 >> 𝛽𝑘 , then 𝜙
(𝑡)
𝑘
→ 1

𝛼𝑘
; i.e., a penalty is applied if the input

is selected too frequently. Similarly, for 𝛽𝑘 >> 𝛼𝑘 , then 𝜙
(𝑡)
𝑘
→ 1;

i.e., the penalty is removed if the input is infrequently chosen. This
prioritizes rare features in C.

The correction factor is self-balancing: if less-explored favored
inputs fail to discover any new inputs then 𝛽𝑘 →∞ and 𝜙 (𝑡)

𝑘
→ 1.

After each time step, 𝜙𝑘 progressively removes the penalty if the
fuzzer fails to discover any new interesting behavior. This allows 𝜃𝑘
to dominate the seed scheduling process. Similarly, 𝜙𝑘 dominates
if new behaviors are quickly discovered.

3.5 Input Selection

A fuzzer must balance exploration and exploitation when selecting
the “best” input to fuzz. Thompson sampling draws a value from 𝐾

Beta distributions (Eq. (8)), then selects the next input to fuzz from
the posterior distribution (Eq. (5)). Importantly, sampling a distri-
bution generates a new distribution, enabling both exploration and
exploitation.

Make out like a (Multi-Armed) Bandit: Improving the Odds of Fuzzer Seed Scheduling with T-Scheduler AsiaCCS ’24, July 01–05, 2024, Singapore

Here, we present two approaches for selecting the next input
to fuzz: input selection without and with rareness correction (Sec-
tions 3.3 and 3.4, respectively). This enables us to evaluate rareness
correction’s impact on fuzzing outcomes (Section 4.5).

We express input selection without rareness correction by sam-
pling directly from Eq. (8); i.e.,

𝑎 (𝑡+1) = arg max[𝜃 (𝑡)1 , . . . , 𝜃
(𝑡)
𝐾
] . (12)

After applying rareness correction, we express input selection as

𝑎 (𝑡+1) = arg max[𝜓 (𝑡)1 𝜃
(𝑡)
1 , . . . ,𝜓

(𝑡)
𝐾
𝜃
(𝑡)
𝐾
], (13)

where𝜓 (𝑡)
𝑘

is computed by Eq. (10). The action 𝑎 (𝑡+1) is then used
to select the next input from the set of favored inputs (Line 15,
Algorithm 1). Intuitively the parameter 𝑎 (𝑡+1) represents the index
of an edge with the highest scheduling probability (𝜃𝑘 or 𝑝) for each
time-step (e.g., for 𝑡 = 4 in Fig. 2, 𝑎 (𝑡+1) will select an input that
has covered Line 3 because 𝑝 = 0.31 is the highest). An alternate
formulation can be made by setting𝜓 (𝑡)

𝑘
to the expected value 𝜙 (𝑡)

𝑘
in Eq. (11).

4 EVALUATION

We evaluate T-Scheduler over 35 CPU-yr of fuzzing, comparing
it to four fuzzers and 11 schedulers across 35 programs from the
Magma [17] and FuzzBench [28] benchmarks. Our evaluation aims
to answer the following research questions:
RQ 1 Does T-Scheduler improve bug discovery? (Section 4.2)
RQ 2 Does T-Scheduler improve code coverage? (Section 4.3)
RQ 3 What are the run-time costs of T-Scheduler? (Section 4.4)
RQ 4 How do T-Scheduler’s design choices impact fuzzing out-

comes? (Section 4.5)

4.1 Methodology

Fuzzer Selection. We evaluate three T-Scheduler variants:
Rare

− No rareness correction (Eq. (12)).
Rare

+ Rareness correction via the expected value (i.e., with
𝜓
(𝑡)
𝑘

:= 𝜙 (𝑡)
𝑘

in Eq. (13)).
Sample Rareness correction via sampling (Eq. (13)).
All three variants are implemented in AFL++ (v4.01a) [15]. We build
on AFL++—rather than AFL [47]—because it incorporates state-
of-the-art fuzzing improvements that T-Scheduler can leverage.
Rare+ deterministically selects the next input by computing the
model’s expected value. In contrast, Sample probabilistically selects
the next input by drawing samples from the model’s distribution.

To emphasize T-Scheduler’s generality, we evaluate it against
four fuzzers using two instrumentation schemes: LLVM compiler
and QEMU binary. While QEMU significantly reduces fuzzer itera-
tion rates, it is important to understand fuzzer performance when
source code is not available. Importantly, this reduction is consis-
tent across all fuzzers, so does not (dis)advantage any particular
fuzzer. We select fuzzers using LLVM to answer RQ 1 and fuzzers
using QEMU to answer RQ 2. These fuzzers are:
AFL++ (v4.01a) [15] The current state-of-the-art greybox fuzzer.

We run AFL++ with eight supported power schedules [15]: the
six AFLFast [7] schedules (EXPLORE, FAST, COE, QUAD, LIN,
and EXPLOIT), and AFL++’s MMOPT (increases the score for

new inputs to focus on newly-discovered paths) and RARE (ig-
nores the input’s run-time and focuses on inputs covering rarely-
discovered features). We use AFL++ to answer both RQs 1 and 2.
For RQ 1 we use LLVM’s link-time optimization and also fuzz
with an additional “CmpLog”-instrumented target (for logging
comparison operands [4]).

K-Scheduler [35] Schedules inputs based on Katz centrality [21]
analysis of the CFG. Katz centrality measures the “influence”
of an input. This analysis helps seed scheduling by revealing
the potential coverage gains from mutating a particular input.
The AFL based K-Scheduler is implemented using LLVM’s CFG
analysis, so we use it to answer RQ 1.

TortoiseFuzz [43] Introduces three new coverage metrics for in-
put scheduling operating on the function, loop, and basic block
levels. TortoiseFuzz uses prior information on memory oper-
ations to gain further insights in prioritizing seeds leading to
memory corruption bugs. This focus on memory corruption bugs
and reliance on LLVM analyses means we use the AFL based
TortoiseFuzz to answer RQ 1.

AFL-Hier [40] Combines a hierarchy of coverage metrics (rang-
ing from coarse-grained to fine-grained) and an RL-based hierar-
chical seed scheduler for managing clusters of inputs (preventing
fine-grained coverage metrics from flooding the queue). The AFL
based AFL-Hier’s hierarchy of coverage metrics is implemented
in QEMU, and thus we use it to answer RQ 2.

Benchmark Selection. We evaluate these fuzzers on the Magma
and FuzzBench benchmarks. At the time of writing, FuzzBench’s
libxml and libpcap failed to download. Thus, we omit these two
targets from our evaluation. K-Scheduler also failed to construct
CFGs for (and thus fuzz) php and poppler.

Experimental Setup. Each target is fuzzed for 72 h and repeated
ten times to ensure statistically-sound results. We bootstrap each
target with the default seeds provided by the benchmark. We con-
duct all experiments on a server with a 48-core Intel® Xeon® Gold
5118 2.30GHz CPU, 512GiB of RAM, and running Ubuntu 18.04.

4.2 Bug Discovery (RQ 1)

The ultimate goal of fuzzing is to find bugs. To this end, we evaluate
the LLVM-based fuzzers presented in Section 4.1 on the Magma
benchmark (>16 CPU-yr of fuzzing). Magma distinguishes between
bugs reached and triggered. A bug is reached when “the faulty line of
code is executed” (i.e., control-flow constraints aremet) and triggered
when “the fault condition is satisfied” (i.e., data-flow constraints are
met). We focus on triggering bugs (not just reaching them) and say
that fuzzer/scheduler F1 outperforms F2 on a given bug if (a) F1
finds the bug and F2 does not, or (b) F1 finds the bug faster than F2.

Table 1 shows that Sample was the best-performing scheduler
across four out of five (80 %) of our bug-finding metrics (“total”,
“unique”, “fastest”, and “missed”), while Rare− scored the highest
on the remaining metric (“best”). Of the eight AFL++ schedulers,
FAST found the most bugs (“total” = 472) and was the second-
best performer across the “best”, “unique”, “fastest”, and “missed”
metrics (after MMOPT, COE, EXPLORE, and COE, respectively).
These results reinforce the AFL++ developers’ decision to make
FAST the default scheduler. Notably, the EXPLOIT scheduler (the

AsiaCCS ’24, July 01–05, 2024, Singapore Luo et al.

Table 1: Summary of Magma bug-finding results (across 10 trials). Count = number of bugs found in a target. Total = number of

bugs found across all targets. Best = number of times a fuzzer found the most bugs in a given target. Unique = number of bugs

found in any of the ten trials. Fastest = number of times a fuzzer found a bug first (per the restricted mean survival time [3]

and log-rank test [26]). Missed = number of times a fuzzer failed to find a bug across all ten trials. Consistency = mean number

of unique bugs found per trial (i.e., total / unique / # trials). The best-performing fuzzer(s) for each metric is in green. Targets

that failed to build or run with the given fuzzer are marked with ✗. Full results are presented in Appendix A.

Fuzzer

AFL++ T-SchedulerTarget Driver
EXPLORE FAST COE QUAD LIN EXPLOIT MMOPT RARE K-Sched Tortoise Rare− Rare+ Sample

libpng libpng_read_fuzzer 23 29 25 24 17 30 24 23 11 11 19 18 18
libsndfile sndfile_fuzzer 70 70 70 70 70 70 70 70 28 20 70 70 70

tiff_read_rgba_fuzzer 36 34 35 31 32 35 37 34 20 17 37 33 35
libtiff

tiffcp 49 49 48 43 43 50 49 52 41 34 53 48 49
xml_read_memory_fuzzer 31 34 34 30 34 30 40 31 10 10 30 34 35

libxml2
xmllint 27 25 28 22 25 20 27 24 13 10 27 28 31

lua lua 10 10 10 10 6 9 9 10 10 9 13 11 11
asn1 18 20 19 18 18 20 20 19 11 10 20 20 20
client 10 10 10 10 10 10 10 10 10 3 10 10 10
server 10 10 10 10 10 10 10 10 20 20 18 18 16openssl

x509 0 1 1 0 0 3 0 4 0 8 0 0 0
php exif 16 19 18 14 14 26 18 20 ✗ 30 30 30 30

pdf_fuzzer 32 27 27 25 25 31 30 30 ✗ 20 33 32 34
pdfimages 35 42 40 29 25 32 38 32 ✗ 16 34 35 38poppler

pdftoppm 42 42 46 28 30 32 46 37 ✗ 20 38 40 37

Co
un

t

sqlite3 sqlite3_fuzz 45 50 38 29 49 33 42 39 2 0 36 41 43

Total 454 472 459 393 408 441 471 445 176 238 468 468 477
Best 2 5 3 2 2 4 6 2 2 3 7 4 6
Unique 63 63 65 54 61 59 63 60 24 29 62 63 65
Fastest 11 10 4 6 8 7 9 4 1 3 7 5 11
Missed 15 15 13 24 17 19 15 18 54 49 16 15 13

Consistency 0.72 0.75 0.71 0.73 0.67 0.75 0.75 0.74 0.73 0.82 0.75 0.73 0.73

original AFL’s scheduler) was one of the worst performers (e.g., it
was the third worst performer in missed bugs).

COE found more unique bugs (65) than Rare− (62) and Rare+
(63). However, the higher “total” results across the T-Scheduler
variants suggest that T-Scheduler produces more-consistent bug-
finding results. We reinforce this result with a “consistency” metric,
defined as the total number of bugs divided by the number of unique
bugs averaged across all ten trials. Based on this metric, Rare−
outperformed or performed as well as all AFL++ schedulers. That is,
the number of bugs discovered by T-Scheduler remains consistent
as the number of trials decreases.

All three T-Scheduler variants outperformed K-Scheduler and
TortoiseFuzz—two state-of-the-art schedulers—across four of the
five (80 %) bug-findingmetrics (“total”, “best”, “unique”, and “missed”).
Sample (the best-performing T-Scheduler variant) outperformed
or performed as well as K-Scheduler on 11 out of 12 drivers (we
exclude php and poppler because they failed to build). Similarly,
Sample outperformed or performed as well as TortoiseFuzz on 14
out of 16 drivers. We examine these results in the following sections.

4.2.1 K-Scheduler Comparison. Of the 35 bugs found by Sam-
ple or K-Scheduler, the former: (i) outperformed K-Scheduler
on 27 bugs; (ii) performed as well as K-Scheduler on six bugs;
and (iii) was outperformed by K-Scheduler on two bugs. Notably,
K-Scheduler failed to discover 16 of the 27 (59 %) bugs where T-
Scheduler outperformed K-Scheduler. Moreover, K-Scheduler
was, on average, ∼50× slower at finding the remaining ten bugs.
We attribute these results to K-Scheduler prioritizing “exploration”
over “exploitation”. Prior work on directed greybox fuzzing [6, 41,

49] has shown that fuzzers must both “explore” interesting code
and “exploit” specific data-flow conditions to trigger bugs.4 Concen-
trating on CFG expansion means that K-Scheduler does not focus
on this exploitation phase, potentially harming bug discovery.

Finding: TIF009. One exception to these results is TIF009, which
K-Scheduler found after 3.29 h (mean time over ten trials). In com-
parison, Rare− , Rare+, and Sample found it after 14.31, 33.37 and
33.77 h, respectively (4–10× slower). TIF009 (CVE-2019-7663 [29])
is a NULL pointer dereference located in TIFFWriteDirectory-
TagTransferfunction. This vulnerable function is reachable via
TIFFWriteDirectorywhen the TransferFunction field is set in a
TIFF directory entry [1], and the bug is triggered when the transfer
function pointers are NULL.

K-Scheduler and T-Scheduler trigger the bug within 3–120 s
of reaching it, suggesting the bug does not require satisfying com-
plex data-flow constraints (which pure mutational fuzzers—e.g.,
AFL++—may have difficulty satisfying). Moreover, multiple inputs
from the initial seed set reach TIFFWriteDirectory without any
mutation. Ultimately, K-Scheduler’s centrality score led it to the
vulnerable function faster because it prioritized inputs that explored
TIFFWriteDirectory, which had a relatively high centrality score
(0.288). In comparison, neighboring CFG nodes had significantly
lower centrality scores (0.047; while the median centrality score
was 0.22). The relatively-simple data-flow constraints (a struct field
set to NULL) meant that K-Scheduler’s prioritization of exploration
over exploitation was an advantage.
4This is an unfortunate overloading of terms, and should not be confused with a MAB’s
exploration and exploitation phases.

Make out like a (Multi-Armed) Bandit: Improving the Odds of Fuzzer Seed Scheduling with T-Scheduler AsiaCCS ’24, July 01–05, 2024, Singapore

4.2.2 TortoiseFuzz Comparison. 37 of the 55 (67 %) bugs discov-
ered across all 13 fuzzers/schedulers were memory safety bugs (e.g.,
stack/heap buffer overflow/over-read, NULL pointer dereference).
Thus, we expected TortoiseFuzz to demonstrate superior results in
discovering these bugs (due to its design targeting memory safety
bugs). However, TortoiseFuzz was outperformed by the other fuzzer-
s/schedulers (in particular, T-Scheduler): it failed to trigger 20 of
the 37 (54 %) memory safety bugs in any trial, and was slower at
triggering another eight. TortoiseFuzz was outperformed by Rare− ,
Rare+, and Sample on 51, 53, and 58 bugs, respectively.

Notably TortoiseFuzz and K-Scheduler use a different set of
heuristics based on the assumption that inputs reaching specific
target sites are more likely to induce new program behaviors. Tor-
toiseFuzz prioritizes memory-sensitive bugs allowing it to detect
several memory-sensitive bugs earlier such as TIF009, SSL009, and
PDF010. In contrast, T-Scheduler heuristics are derived from the
assumption that (a) information derived from previous test cases
can be used to improve input scheduling in the future, and (b) it is
beneficial to spend resources on paths less explored to gain more
information about the program to improve input scheduling. A po-
tential improvement is to extend the model to be a directed greybox
fuzzing where they have a different set of assumptions where the
scheduler should prioritize specific sites such as memory-sensitive
functions which are more likely to induce new program behaviors.

Finding: sqlite3. TortoiseFuzz failed to find any bugs in sqlite3.
In contrast, Rare− found seven bugs, while Rare+ and Sample
found eight. This was due to the limited coverage expanded by
TortoiseFuzz: it achieved only ∼7 % line coverage, while Sample
achieved >50 % line coverage. We attribute this low coverage to Tor-
toiseFuzz’s iteration rate: only 58 input/s. In contrast, T-Scheduler
achieved an iteration rate >450 input/s. This reinforces the impor-
tance of reducing run-time overheads to maximize throughput.

Result 1

Sample was the (equal) best performer across the most (four
out of five) bug-finding metrics: it found the most unique
bugs, was the fastest, and missed the fewest bugs. Rare−
outperformed in the “best” metric.

4.3 Code Coverage (RQ 2)

Bugs are sparse, making it challenging to evaluate fuzzers fairly
using bug-centric metrics. Fuzzer evaluations commonly use code
coverage as a proxy for evaluating fuzzer performance (a bug cannot
be found in code never executed). We repeat this practice here.

We compare coverage using QEMU binary instrumentation on 19
FuzzBench targets (>19 CPU-yr of fuzzing). Comparisons are made
across two measures: final coverage and coverage area under curve
(AUC). Coverage is measured using Clang’s source-based coverage
instrumentation [13]. We use AUC because we found several targets
hadmaximized coverage before the end of a 72 h trial. A higher AUC
indicates that the fuzzer uncovers behaviors at a faster rate, which is
important if the length of a fuzzing campaign is constrained. We use
the Mann-Whitney𝑈 test to determine statistical significance [22].

Per Table 2, AFL++’s COE achieved the (equal) highest coverage
on 16 of the 19 targets (84 %). Of the T-Scheduler variants, Rare−

achieved the highest coverage on 13 targets (68 %) and was the next
best performer after COE. Rare+ and Sample performed similarly
(equal best on five targets). Rare+’s smaller 95 % bootstrap CI in-
dicates less variance (across trials); we attribute this to Rare+’s
deterministic approach for rareness correction. AFL-Hier was the
third worst performing fuzzers (only beating QUAD and LIN, and
tying with EXPLORE). Curiously, it was the best performer on lcms,
achieving twice as much coverage as the next best fuzzer.

COE was again the (equal) best performer for AUC (Table 3).
However, this time it also tied with Rare− . Following Böhme et al.
[8], we use Cohen’s kappa [14] to measure the agreement between
total coverage and AUC of the best-performing fuzzer(s). We found
the results in Tables 2 and 3 are in weak agreement (𝜅 = 0.56).
Outliers including jsoncpp, openssl, and systemd contributed to
this weak agreement. For example, Rare− outperformed Rare+
and Sample on openssl in Table 2, while the opposite is true in
Table 3. These results were due to inaccurate AUC measurements:
coverage measurements occur at 15min intervals, and all fuzzers
had saturated within the first 15min.

Result 2

COE achieved the (equal) highest coverage on 16 of the 19
targets (84 %). Rare− tied with COE when using AUC.

4.4 Scheduler Overheads (RQ 3)

Scheduler overhead impacts a fuzzer’s iteration rate. Prior work [18,
45] has shown that increased iteration rates lead to improved
fuzzing outcomes. Here we investigate the scheduler’s impact on
iteration rates and fuzzing outcomes. To measure this impact, we:
(i) instrument the scheduler to compute run-time overhead, record-
ing the time the fuzzer spends updating the queue and selecting an
input to fuzz; (ii) count the number of times the queue is updated
(i.e., the number of times the fuzzer performs “filtering and favor-
ing”); and (iii) examine the iteration rate reported by the fuzzer.
We adopt the process used by She et al. [35] and run our instru-
mentation across 19 FuzzBench targets for 24 h, repeating this
experiment ten times to minimize variance.

Table 4 shows that, despite an orders-of-magnitude increase
in overhead, T-Scheduler achieves iteration rates comparable to
(and, in most cases, higher than) the eight AFL++ schedulers. Of
the eight AFL++ schedulers, FAST had the highest overhead (85 s),
which we attribute to the high number of queue updates (873 over a
single 24 h trial). However, this again did not impact iteration rates;
FAST’s iteration rate of 210 input/s was the highest. The libpng
and zlib targets dominated this result, achieving iteration rates
over 500 and 700 input/s, respectively.

Unlike T-Scheduler, AFL-Hier’s relatively high update time
(106ms) and overhead (3min) appeared to impact its iteration rate,
which was the third lowest. We attribute these results to the hierar-
chical tree structure AFL-Hier uses to abstract the queue.

4.4.1 Scalability. Queue update times should remain constant (per
trial) as the fuzzer expands coverage and the queue grows. This is
particularly important for large fuzzing campaigns (e.g., Google’s
OSS-Fuzz [34]), where the queue can grow to tens of thousands
of inputs. To this end, we investigate a scheduler’s scalability by

AsiaCCS ’24, July 01–05, 2024, Singapore Luo et al.

Table 2: FuzzBench coverage, presented as mean coverage with 95% bootstrap CI. The best-performing fuzzer(s) for each

target (per the Mann-Whitney 𝑈 test) is in green (larger is better). “Best” is the number of targets a fuzzer achieved the highest

coverage.

Fuzzer

AFL++ T-SchedulerTarget
EXPLORE FAST COE QUAD LIN EXPLOIT MMOPT RARE AFL-Hier Rare− Rare+ Sample

5,884.70 5,767.60 5,998.50 5,514.40 5,794.30 6,069.50 5,944.10 5,935.50 6,113.20 5,918.20 6,001.70 6,069.20
bloaty ± 109.18 ± 97.83 ± 74.35 ± 131.59 ± 108.91 ± 61.48 ± 141.67 ± 88.13 ± 126.46 ± 41.84 ± 47.54 ± 47.18

18,968.10 16,778.90 19,375.40 18,738.90 18,660.50 18,204.40 19,164.40 18,712.20 13,370.10 16,795.20 16,776.30 16,786.00
curl ± 46.26 ± 35.11 ± 45.64 ± 149.82 ± 64.69 ± 148.61 ± 72.55 ± 88.77 ± 9.31 ± 124.08 ± 53.54 ± 79.30

14,396.00 14,585.80 16,419.70 13,836.00 14,246.40 15,609.50 15,053.80 15,364.90 14,598.80 15,860.40 16,018.10 15,734.60
freetype2 ± 197.46 ± 356.16 ± 181.27 ± 272.73 ± 204.66 ± 275.23 ± 399.48 ± 201.14 ± 924.03 ± 171.62 ± 219.93 ± 176.92

7,642.40 7,550.50 7,777.10 7,333.60 7,222.30 7,470.00 7,640.00 7,560.30 6,616.10 7,727.60 7,577.60 7,663.00
harfbuzz ± 118.41 ± 104.96 ± 58.23 ± 144.77 ± 115.52 ± 71.30 ± 101.47 ± 70.59 ± 317.23 ± 31.45 ± 35.36 ± 24.29

639.00 639.00 639.00 639.00 639.00 636.00 639.00 639.00 545.10 639.00 639.00 639.00
jsoncpp ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 56.91 ± 0.00 ± 0.00 ± 0.00

1,227.20 1,223.80 1,317.10 1,235.80 1,370.10 1,262.00 1,224.70 1,235.30 2,293.22 1,254.70 1,233.40 1,251.40
lcms ± 0.58 ± 1.18 ± 17.45 ± 8.95 ± 136.16 ± 16.67 ± 1.83 ± 6.69 ± 135.79 ± 11.71 ± 2.09 ± 13.38

3,561.10 3,656.60 3,745.90 3,451.40 3,442.40 3,140.70 3,749.80 3,057.90 2,909.60 3,764.40 3,497.00 3,517.60
libjpeg-turbo ± 55.74 ± 49.42 ± 41.05 ± 44.76 ± 21.84 ± 36.43 ± 31.54 ± 11.70 ± 75.03 ± 29.95 ± 47.71 ± 54.57

2,089.40 2,084.10 2,084.50 2,076.10 2,082.40 2,091.40 2,097.40 2,056.20 1,619.00 2,079.20 2,074.30 2,064.10
libpng ± 4.80 ± 5.07 ± 7.94 ± 5.29 ± 6.32 ± 4.53 ± 5.72 ± 7.82 ± 32.11 ± 6.11 ± 6.13 ± 7.27

7,698.00 7,642.30 8,147.80 7,659.90 7,701.80 7,749.20 7,652.20 7,693.10 7,467.10 8,025.70 7,652.70 7,631.20
mbedtls ± 10.83 ± 19.18 ± 17.13 ± 13.89 ± 13.86 ± 13.00 ± 5.68 ± 16.09 ± 100.39 ± 26.42 ± 21.38 ± 24.86

13,731.20 13,745.80 13,750.80 13,720.10 13,730.30 13,754.30 13,738.80 13,728.60 13,695.30 13,738.40 13,731.80 13,735.80
openssl ± 3.34 ± 3.13 ± 3.72 ± 2.15 ± 4.85 ± 2.10 ± 4.11 ± 4.80 ± 4.64 ± 4.33 ± 3.71 ± 4.42

5,643.20 5,764.80 5,703.10 5,364.10 5,390.20 5,706.60 5,740.70 5,750.50 5,424.22 5,802.70 5,594.80 5,617.40
openthread ± 38.42 ± 20.37 ± 31.87 ± 42.34 ± 59.08 ± 15.50 ± 29.01 ± 32.94 ± 157.82 ± 18.32 ± 79.15 ± 55.67

42,342.10 42,459.60 42,961.10 41,627.00 41,505.80 41,907.40 42,364.50 42,344.90 41,117.30 44,736.60 42,190.00 44,198.10
php ± 106.95 ± 100.18 ± 61.12 ± 61.70 ± 38.58 ± 109.88 ± 136.80 ± 99.31 ± 534.67 ± 70.01 ± 143.45 ± 73.78

5,610.70 5,699.10 6,579.70 5,132.90 5,112.60 5,310.30 5,807.10 5,129.00 2,320.80 6,466.50 6,092.50 6,132.00
proj4 ± 141.28 ± 76.92 ± 91.73 ± 80.43 ± 54.38 ± 132.76 ± 121.24 ± 86.67 ± 369.80 ± 106.58 ± 205.82 ± 67.97

3,506.10 3,498.50 3,518.00 3,486.00 3,504.00 3,475.70 3,502.60 3,502.70 3,055.30 3,530.10 3,486.70 3,484.50
re2 ± 3.59 ± 4.15 ± 4.18 ± 7.05 ± 1.69 ± 4.83 ± 5.71 ± 6.87 ± 22.87 ± 5.40 ± 7.58 ± 4.90

21,191.10 21,651.90 23,210.00 21,281.40 21,558.00 23,197.10 22,097.90 22,479.50 19,041.60 23,301.90 22,028.80 22,021.20
sqlite3 ± 151.57 ± 306.67 ± 366.46 ± 113.28 ± 159.46 ± 386.04 ± 194.40 ± 127.28 ± 177.51 ± 577.27 ± 78.95 ± 143.47

637.60 639.40 640.00 640.00 638.20 633.40 638.80 639.40 613.56 640.00 640.00 640.00
systemd ± 0.92 ± 0.56 ± 0.00 ± 0.00 ± 1.21 ± 1.57 ± 1.14 ± 0.57 ± 13.21 ± 0.00 ± 0.00 ± 0.00

2,098.40 1,991.70 2,140.40 2,030.90 2,061.70 2,043.70 2,087.10 1,986.90 1,549.00 2,156.30 2,073.20 2,062.70
vorbis ± 16.27 ± 39.81 ± 8.86 ± 26.69 ± 32.15 ± 17.80 ± 18.38 ± 23.53 ± 0.00 ± 4.42 ± 8.68 ± 22.25

1,769.80 1,694.40 1,841.30 1,773.10 1,744.60 1,731.40 1,775.10 1,678.00 1,498.56 1,860.90 1,717.60 1,699.10
woff2 ± 14.61 ± 13.88 ± 9.47 ± 7.82 ± 14.93 ± 5.95 ± 6.69 ± 8.61 ± 49.29 ± 9.41 ± 5.69 ± 7.14

945.40 942.20 953.80 932.80 932.20 940.20 947.20 948.50 920.30 960.10 954.90 959.40
zlib ± 4.12 ± 5.24 ± 3.91 ± 3.71 ± 3.42 ± 4.81 ± 5.06 ± 5.02 ± 3.69 ± 1.65 ± 4.67 ± 3.49

Best 3 5 16 2 2 5 6 4 3 13 5 5

examining how much queue update times vary (across a single 24 h
trial). Table 4 shows these results under “update variance”.

Like queue update time, queue update time variance is negligible.
T-Scheduler has effectively no variance, making it ideal for long-
running fuzzing campaigns. AFL-Hier and AFL++’s RARE have
the highest variance. This is unsurprising; RARE focuses on queue
entries that hit rare coverage map elements, requiring additional
computation to find those rare elements, while operations on AFL-
Hier’s hierarchical tree structure have O(𝑛) complexity.

Result 3

T-Schedulermaintains high iteration rates, despite increased
scheduling overheads. T-Scheduler is also scalable: queue
update times remain constant over fuzzing campaigns.

4.5 Ablation Study (RQ 4)

We undertake an ablation study to understand better the impacts
the individual T-Scheduler components have on our results. We
study: (i) AFL++ FAST; (ii) Rare− , replacing the FAST scheduler
with a MAB; and (iii) Sample, adding a correction for rareness. We
select FAST because it is AFL++’s default scheduler, and Sample
because it generally outperforms Rare+ (RQs 1 and 2).

Figure 4 visualizes the unique bug counts from Table 1. FAST
found 63 unique bugs, of which five were only found by FAST. Re-
placing FAST with Rare− decreased the number of unique bugs
to 62. However, Rare− found two bugs missed by the other two
schedulers.When adding rareness correction (via Sample) toRare− ,
the number of bugs increased to 65. Moreover, four of these 65
bugs were only found by Sample, and were found (a) late into the
fuzzing process (after ∼60 h), and (b) by only a small number of
fuzzers/schedulers, suggesting they are difficult to trigger.

Make out like a (Multi-Armed) Bandit: Improving the Odds of Fuzzer Seed Scheduling with T-Scheduler AsiaCCS ’24, July 01–05, 2024, Singapore

Table 3: FuzzBench AUC, presented as mean AUC with 95% bootstrap CI. The best-performing fuzzer(s) for each target (per

the Mann-Whitney 𝑈 test) is in green (larger is better). “Best” is the number of times a fuzzer achieved the highest AUC for the

evaluated targets.

Fuzzer

AFL++ T-SchedulerTarget
EXPLORE FAST COE QUAD LIN EXPLOIT MMOPT RARE AFL-Hier Rare− Rare+ Sample

1,855.49 1,798.74 1,881.75 1,739.14 1,832.82 1,901.46 1,860.15 1,882.21 720.66 1,876.27 1,903.64 1,917.34
bloaty ± 36.81 ± 29.02 ± 21.23 ± 37.05 ± 32.55 ± 18.05 ± 39.57 ± 26.01 ± 88.80 ± 12.40 ± 12.70 ± 12.21

5,935.13 5,297.44 6,128.42 5,876.09 5,845.46 5,685.59 5,981.73 5,899.21 22.31 5,270.48 5,284.60 5,278.60
curl ± 32.79 ± 8.34 ± 21.96 ± 49.73 ± 32.48 ± 42.23 ± 11.66 ± 16.57 ± 4.41 ± 31.77 ± 15.11 ± 23.71

4,485.76 4,524.82 5,026.24 4,316.93 4,433.65 4,794.04 4,617.88 4,691.47 1,596.44 4,892.82 4,911.98 4,821.05
freetype2 ± 63.39 ± 102.24 ± 53.00 ± 83.98 ± 52.09 ± 71.91 ± 108.91 ± 37.17 ± 349.75 ± 58.15 ± 46.05 ± 42.39

2,367.14 2,326.66 2,407.32 2,270.86 2,237.21 2,292.35 2,358.83 2,340.57 1,317.19 2,425.86 2,372.57 2,396.13
harfbuzz ± 34.39 ± 31.08 ± 16.32 ± 41.14 ± 30.87 ± 21.88 ± 30.49 ± 21.70 ± 211.41 ± 11.06 ± 13.43 ± 7.54

203.63 203.23 203.71 203.54 203.69 202.66 203.46 203.49 80.35 202.70 203.39 203.27
jsoncpp ± 0.07 ± 0.17 ± 0.05 ± 0.02 ± 0.01 ± 0.02 ± 0.11 ± 0.01 ± 15.07 ± 0.28 ± 0.17 ± 0.15

389.70 387.03 393.74 390.46 406.59 392.60 388.93 390.42 572.34 394.88 389.15 390.45
lcms ± 0.33 ± 0.57 ± 0.81 ± 0.96 ± 15.81 ± 1.47 ± 0.49 ± 0.46 ± 48.40 ± 1.99 ± 0.57 ± 1.55

1,085.49 1,096.15 1,160.83 1,071.70 1,072.38 973.90 1,121.60 954.81 750.88 1,173.16 1,064.67 1,067.75
libjpeg-turbo ± 9.90 ± 11.33 ± 11.89 ± 8.03 ± 3.32 ± 4.95 ± 12.41 ± 6.06 ± 38.03 ± 11.36 ± 15.36 ± 16.61

663.27 660.20 663.96 657.04 660.73 661.04 665.76 650.26 442.56 658.86 657.18 652.64
libpng ± 1.60 ± 1.99 ± 2.50 ± 2.20 ± 2.07 ± 1.43 ± 1.78 ± 2.72 ± 28.84 ± 2.12 ± 1.97 ± 2.12

2,436.35 2,419.82 2,541.22 2,436.52 2,446.75 2,455.33 2,420.35 2,436.75 1,941.63 2,471.21 2,428.81 2,418.06
mbedtls ± 2.24 ± 5.30 ± 5.61 ± 3.85 ± 3.71 ± 3.24 ± 3.02 ± 3.06 ± 231.06 ± 9.09 ± 6.12 ± 7.74

4,369.59 4,370.03 4,382.95 4,372.61 4,376.14 4,378.27 4,373.62 4,374.11 2,414.84 4,355.91 4,377.09 4,368.88
openssl ± 3.07 ± 4.42 ± 1.09 ± 0.94 ± 1.51 ± 0.70 ± 1.99 ± 2.01 ± 513.73 ± 7.69 ± 1.14 ± 4.03

1,748.75 1,762.49 1,791.13 1,668.19 1,660.39 1,746.66 1,790.89 1,784.31 1,254.70 1,825.09 1,729.62 1,713.15
openthread ± 17.22 ± 12.70 ± 11.93 ± 13.06 ± 19.64 ± 8.34 ± 10.25 ± 6.85 ± 180.57 ± 6.25 ± 21.97 ± 16.16

13,390.60 13,388.88 13,584.21 13,194.36 13,177.75 13,183.46 13,389.12 13,337.44 1,151.67 14,016.82 13,414.13 14,016.68
php ± 31.39 ± 32.36 ± 23.81 ± 9.33 ± 9.90 ± 25.63 ± 36.87 ± 23.16 ± 280.18 ± 19.42 ± 38.98 ± 26.92

1,647.87 1,670.72 2,020.40 1,491.32 1,467.89 1,426.01 1,671.35 1,327.46 436.16 1,977.17 1,770.04 1,785.75
proj4 ± 43.23 ± 28.16 ± 28.88 ± 30.43 ± 23.12 ± 41.85 ± 46.43 ± 30.11 ± 76.83 ± 39.66 ± 66.98 ± 25.78

1,107.15 1,102.90 1,116.69 1,097.35 1,099.13 1,082.91 1,103.85 1,097.64 719.14 1,121.36 1,100.35 1,095.72
re2 ± 1.24 ± 1.06 ± 0.94 ± 1.67 ± 1.17 ± 2.76 ± 1.47 ± 1.79 ± 32.05 ± 1.38 ± 2.12 ± 2.18

6,546.16 6,549.26 6,966.93 6,659.31 6,684.83 6,776.79 6,770.59 6,917.85 3,163.01 7,032.32 6,862.27 6,815.92
sqlite3 ± 37.64 ± 84.99 ± 70.91 ± 23.54 ± 42.71 ± 62.16 ± 31.57 ± 23.47 ± 228.67 ± 78.15 ± 20.75 ± 31.30

202.70 202.93 204.00 202.95 202.97 200.68 202.86 202.53 148.28 203.38 203.29 203.16
systemd ± 0.37 ± 0.20 ± 0.02 ± 0.25 ± 0.41 ± 0.33 ± 0.45 ± 0.28 ± 26.43 ± 0.28 ± 0.16 ± 0.26

621.37 597.84 655.33 613.50 618.62 627.95 624.02 616.59 2.07 669.33 625.59 625.32
vorbis ± 4.06 ± 3.77 ± 2.96 ± 4.78 ± 4.97 ± 4.83 ± 5.24 ± 5.06 ± 0.22 ± 1.99 ± 4.40 ± 4.44

540.76 528.67 564.95 549.08 543.36 540.87 541.73 526.76 197.68 580.63 538.27 533.78
woff2 ± 1.79 ± 2.04 ± 2.12 ± 1.01 ± 3.23 ± 1.03 ± 1.71 ± 1.75 ± 73.95 ± 2.47 ± 1.04 ± 1.61

299.20 298.56 301.50 296.07 295.10 291.20 300.56 299.10 273.63 302.06 301.07 302.36
zlib ± 1.05 ± 1.48 ± 1.22 ± 0.77 ± 0.50 ± 0.75 ± 1.34 ± 1.35 ± 10.12 ± 1.34 ± 1.26 ± 1.04

Best 4 2 13 0 0 2 4 3 1 13 4 3

Table 4: Scheduler overheads and iteration rates with 95% bootstrap CI. Update count = number of times the queue is updated

in a single trial (geometric mean). Update time = time spent (ms) on each queue update (arithmetic mean). Update variance

= how much the queue update time varies (ms
2
) in a single trial (arith. mean). Overhead = total time (s) the fuzzer spends

selecting an input to fuzz in a trial (arith. mean). Iteration rate = number of inputs executed per second (arith. mean).

Fuzzer

AFL++ T-Scheduler

EXPLORE FAST COE QUAD LIN EXPLOIT MMOPT RARE AFL-Hier Rare− Rare+ Sample

269.97 873.86 283.12 328.12 590.47 80.03 281.25 124.42 88.84 672.38 649.44 635.84Update count (#) ± 44.62 ± 156.92 ± 46.29 ± 57.84 ± 135.07 ± 7.91 ± 46.43 ± 17.73 ± 17.17 ± 87.68 ± 86.14 ± 81.63
14.96 9.29 9.52 15.17 16.77 29.88 15.62 39.77 106.55 41.76 42.05 79.83Update time (ms) ± 3.47 ± 1.32 ± 1.30 ± 3.26 ± 7.29 ± 7.25 ± 2.83 ± 7.99 ± 23.59 ± 0.09 ± 0.11 ± 0.23
0.40 0.01 0.00 0.09 0.12 0.11 0.04 0.52 0.75 0.00 0.00 0.00Update variance (ms2) ± 0.37 ± 0.00 ± 0.00 ± 0.04 ± 0.10 ± 0.06 ± 0.02 ± 0.32 ± 0.51 ± 0.00 ± 0.00 ± 0.00
57.84 85.35 49.34 58.18 62.00 49.18 56.38 64.13 207.68 2,488.36 2,419.26 4,443.65Overhead (s) ± 9.32 ± 11.90 ± 7.66 ± 9.37 ± 9.23 ± 7.02 ± 8.71 ± 10.14 ± 47.91 ± 319.63 ± 317.35 ± 559.37

83.52 210.19 85.06 89.26 87.61 99.86 89.42 58.52 84.84 96.79 94.46 93.60Iteration rate (inputs/s) ± 13.33 ± 39.23 ± 12.20 ± 16.73 ± 15.89 ± 16.94 ± 13.30 ± 9.79 ± 17.28 ± 16.75 ± 16.36 ± 16.67

AsiaCCS ’24, July 01–05, 2024, Singapore Luo et al.

2

Rare− 5

FAST

4

Sample
2

5

353

Figure 4: Venn diagram of unique bug count between

AFLFast, Rare
−
, and Sample (74 unique bugs found across

all drivers).

Sample’s bug-finding performance improved towards the end
of the fuzzing campaign (here, after 45 h of fuzzing), triggering
nine bugs that were missed by FAST. Three of these bugs (XML001,
XML002, and PDF011) are buffer overflow bugs in functions that are
frequently covered by FAST. FAST assigns higher priority to an
input depending on the number of times it covers an edge, while
penalizing inputs that cover paths with high frequency [7]. This
is a limitation of FAST, as a high-frequency path does not neces-
sarily mean a lower chance of discovering new program behavior.
T-Scheduler does not apply a penalty to high-frequency paths if
previously scheduled inputs have discovered new program behav-
iors.

Code coverage increased when replacing the FAST scheduler
with Rare− ’s MAB-based scheduler. Notably, Rare− achieved the
(equal) highest coverage on most FuzzBench targets (Tables 2
and 3). In particular, harfbuzz was the only target where FAST
achieved the most coverage and did not tie with Rare− (Table 2).
This is in contrast to bug finding, where Sample outperformed
Rare− (except for the “best” metric in Table 1). We attribute this to
Rare− ’s single objective (in the RL algorithm) to maximize code
coverage. In contrast, Sample uses a multi-objective optimization
that balances exploring rare paths and maximizing code coverage.

Iteration rates decreased by ∼50 % when replacing FAST with
Rare− (Table 4). However, this decrease was also true of the other
sevenAFL++ schedulers (andwas sometimes evenmore pronounced;
up to 72 %). Sample increased the scheduler overhead from 40min
to 74min (an 84 % increase). We attribute this increase to costs as-
sociated with sampling from the Beta distribution twice (Eq. (13)).
In contrast, Rare− only samples from it once. However, this has
negligible impact on iteration rates: a reduction of ∼1 input/s. Simi-
larly, the variance across queue update times remains zero when
replacing Rare− with Sample, demonstrating its scalability.

To Sample or not to Sample? Our ablation study focused on Sam-
ple, which probabilistically samples for rareness correction. How-
ever, it is worth revisiting Rare+—which deterministically com-
putes an expected value for rareness correction—to understand
what impact the probabilistic approach has on fuzzing outcomes.
Sample outperformed Rare+ across all bug-finding metrics (Ta-
ble 1). Sample also slightly outperformed Rare+ (by a single tar-
get) on total coverage (Table 2) and performed the same on cov-
erage AUC (Table 3). While probabilistically sampling resulted in
higher scheduler overhead, this had a negligible impact on the

fuzzer’s iteration rate (Table 4). In most applications, the probabilis-
tic approach should outperform a deterministic approach. Thus, we
recommend Sample for general use based on our results.

Result 4

Accounting for rare coverage elements (with Sample) im-
proves bug-finding performance (over Rare−). However,
Rare− ’s single objective of maximizing coverage leads to
higher coverage. Both improve upon FAST.

5 RELATEDWORK

Woo et al. [44] were one of the first to formulate fuzzing as a MAB.
Their work focused on blackbox fuzzing, where there is no coverage
feedback to guide the fuzzer.Woo et al. [44] proposed using the exp3
algorithm [33], with the fuzzer rewarded based on the number of
unique bugs found. However, bugs are sparse, so assigning a reward
based on their discovery is impractical. In contrast, AFLFast [7]
focused on greybox fuzzing, introducing the power schedule for
seed scheduling (see Section 2.2). Entropic [5] expanded this with
an entropy-based power schedule for prioritizing information gain.

Prior work has applied MAB to greybox fuzzing. Karamcheti
et al. [20], Koike et al. [23] use a MAB over the fuzzer’s mutation
operators, while EcoFuzz [46], AFL-Hier [40], and MobFuzz [48]
use a MAB for seed scheduling.

EcoFuzz [46] eschews a traditional MAB for an adversarial bandit.
While an adversarial bandit removes assumptions about the bandits’
probability distributions, this generality requires more hyperpa-
rameters to tune. In particular, EcoFuzz has two hyperparameters—
exploration and decay—and uses entropy to compute the probability
of an input’s (potential) information gain.

AFL-Hier [40] combines a multiplayer MAB with a hierarchical
tree structure to balance exploration/exploitation across coverage
metrics. Like EcoFuzz, AFL-Hier has two hyperparameters (explo-
ration and decay). However, unlike EcoFuzz, AFL-Hier rewards
rare code paths, encouraging the scheduler to select inputs that
cover less-explored paths.

Finally, MobFuzz [48] uses a multi-objective optimization formu-
lated as a multiplayer MAB, maximizing three objectives: execution
speed, memory consumption, and the length of memory compar-
isons. MobFuzz uses a weighted average of these three objectives
to compute the reward for each input.

6 CONCLUSIONS

We present T-Scheduler, an RL-based fuzzer seed scheduler. Un-
like prior RL-based schedulers, T-Scheduler does not require hy-
perparameter tuning. We empirically demonstrate T-Scheduler’s
effectiveness over 35 CPU-yr of fuzzing. On Magma, T-Scheduler
found the most bugs and missed the fewest. On FuzzBench, it was
the fastest at expanding coverage on the most targets. T-Scheduler
also maintains consistently-high iteration rates (even as the queue
grows). Given our results, we recommend the adoption of our Sam-
ple variant. Interestingly, our results also show that AFL++’s default
FAST scheduler was generally outperformed by the MMOPT sched-
uler (across both bug-finding and coverage-expansion metrics). We
encourage others to adopt and build upon T-Scheduler, available
at https://github.com/asiaccs2024-t-scheduler.

https://github.com/asiaccs2024-t-scheduler

Make out like a (Multi-Armed) Bandit: Improving the Odds of Fuzzer Seed Scheduling with T-Scheduler AsiaCCS ’24, July 01–05, 2024, Singapore

ACKNOWLEDGMENTS

This work was supported by the Defence Science and Technology
Group Next Generation Technologies Fund (Cyber) program via
the KRONOS Data61 Collaborative Research Project.

REFERENCES

[1] Adobe. 1992. TIFF, Revision 6.0. https://www.loc.gov/preservation/digital/
formats/fdd/fdd000022.shtml

[2] Shipra Agrawal and Navin Goyal. 2017. Near-Optimal Regret Bounds for
Thompson Sampling. Jorunal of the ACM 64, 5, Article 30 (2017), 24 pages.
https://doi.org/10.1145/3088510

[3] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical
Tests to Assess Randomized Algorithms in Software Engineering. In International

Conference on Software Engineering (ICSE). ACM, 1–10. https://doi.org/10.1145/
1985793.1985795

[4] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.
In Network and Distributed System Security (NDSS). The Internet Society, 15 pages.
https://doi.org/10.14722/ndss.2019.23371

[5] Marcel Böhme, Valentin J. M. Manès, and Sang Kil Cha. 2020. Boosting Fuzzer
Efficiency: An Information Theoretic Perspective. In European Software Engi-

neering Conference and Foundations of Software Engineering (ESEC/FSE). ACM,
678–689. https://doi.org/10.1145/3368089.3409748

[6] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed Greybox Fuzzing. In Computer and Communications Security (CCS).
ACM, 2329–2344. https://doi.org/10.1145/3133956.3134020

[7] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
Based Greybox Fuzzing as Markov Chain. In Computer and Communications

Security (CCS). ACM, 1032–1043. https://doi.org/10.1145/2976749.2978428
[8] Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the Reliability

of Coverage-Based Fuzzer Benchmarking. In International Conference on Software

Engineering (ICSE). ACM, 1621–1633. https://doi.org/10.1145/3510003.3510230
[9] Konstantin Böttinger, Patrice Godefroid, and Rishabh Singh. 2018. Deep Re-

inforcement Fuzzing. In Security and Privacy Workshops (SPW). IEEE, 116–122.
https://doi.org/10.1109/SPW.2018.00026

[10] Oliver Chang. 2023. Taking the next step: OSS-Fuzz in 2023. https://security.
googleblog.com/2023/02/taking-next-step-oss-fuzz-in-2023.html

[11] Yaohui Chen, Mansour Ahmadi, Reza Mirzazade farkhani, Boyu Wang, and Long
Lu. 2020. MEUZZ: Smart Seed Scheduling for Hybrid Fuzzing. In Research in

Attacks, Intrusions and Defenses (RAID). USENIX, 77–92.
[12] Liang Cheng, Yang Zhang, Yi Zhang, ChenWu, Zhangtan Li, Yu Fu, and Haisheng

Li. 2019. Optimizing Seed Inputs in Fuzzing with Machine Learning. In Inter-

national Conference on Software Engineering: Companion (ICSE). IEEE, 244–245.
https://doi.org/10.1109/ICSE-Companion.2019.00096

[13] Clang Team. 2022. Source-based Code Coverage. https://clang.llvm.org/docs/
SourceBasedCodeCoverage.html

[14] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational
and Psychological Measurement 20, 1 (1960), 37–46. https://doi.org/10.1177/
001316446002000104

[15] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In Workshop on Offensive

Technologies (WOOT). USENIX, 12 pages.
[16] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine

Learning for Input Fuzzing. In Automated Software Engineering (ASE). IEEE,
50–59.

[17] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-
Truth Fuzzing Benchmark. Measurement and Analysis of Computing Systems 4, 3,
Article 49 (2020), 29 pages. https://doi.org/10.1145/3428334

[18] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,
and Antony L. Hosking. 2021. Seed Selection for Successful Fuzzing. In Inter-

national Symposium on Software Testing and Analysis (ISSTA). ACM, 230–243.
https://doi.org/10.1145/3460319.3464795

[19] Adrian Herrera, Mathias Payer, and Antony L. Hosking. 2022. Registered Report:
datAFLow Towards a Data-Flow-Guided Fuzzer. In Fuzzing Workshop (FUZZING).
The Internet Society, 11 pages. https://doi.org/10.14722/fuzzing.2022.23001

[20] Siddharth Karamcheti, Gideon Mann, and David Rosenberg. 2018. Adaptive
Grey-Box Fuzz-Testing with Thompson Sampling. In Artificial Intelligence and

Security (AISec). ACM, 37–47. https://doi.org/10.1145/3270101.3270108
[21] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychome-

trika (1953), 39–43. https://doi.org/10.1007/BF02289026
[22] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating Fuzz Testing. In Computer and Communications Security (CCS). ACM,
2123–2138. https://doi.org/10.1145/3243734.3243804

[23] Yuki Koike, Hiroyuki Katsura, Hiromu Yakura, and YumaKurogome. 2022. SLOPT:
Bandit Optimization Framework forMutation-Based Fuzzing. In Proceedings of the

38th Annual Computer Security Applications Conference (ACSAC). ACM, 519–533.
https://doi.org/10.1145/3564625.3564659

[24] Tor Lattimore and Csaba Szepesvári. 2020. Bandit algorithms. Cambridge Univer-
sity Press.

[25] Siqi Li, Xiaofei Xie, Yun Lin, Yuekang Li, Ruitao Feng, Xiaohong Li, Weimin Ge,
and Jin Song Dong. 2022. Deep Learning for Coverage-Guided Fuzzing: How
Far are We? Transactions on Dependable and Secure Computing (2022), 1–13.
https://doi.org/10.1109/TDSC.2022.3200525

[26] Nathan Mantel. 1966. Evaluation of survival data and two new rank order
statistics arising in its consideration. Cancer Chemotherapy Reports 50, 3 (1966),
163–170.

[27] Valentin J.M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. Transactions on Software Engineering 47, 11
(2021), 2312–2331. https://doi.org/10.1109/TSE.2019.2946563

[28] Jonathan Metzman, László Szekeres, Laurent Maurice Romain Simon, Read
Trevelin Sprabery, and Abhishek Arya. 2021. FuzzBench: An Open Fuzzer
Benchmarking Platform and Service. In European Software Engineering Con-

ference and Foundations of Software Engineering (ESEC/FSE). ACM, 1393–1403.
https://doi.org/10.1145/3468264.3473932

[29] NIST. 2019. CVE-2019-7663. https://nvd.nist.gov/vuln/detail/CVE-2019-7663
[30] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David

Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In USENIX Security (SEC). USENIX, 861–875.

[31] Gary J. Saavedra, Kathryn N. Rodhouse, Daniel M. Dunlavy, and W. Philip
Kegelmeyer. 2019. A Review of Machine Learning Applications in Fuzzing.
arXiv Preprint abs/1906.11133 (2019), 12 pages. https://doi.org/10.48550/arXiv.
1906.11133

[32] Joseph Scott, Federico Mora, and Vijay Ganesh. 2020. BanditFuzz: A
Reinforcement-Learning Based Performance Fuzzer for SMT Solvers. In Ver-

ified Software: Theories, Tools, and Experiments (VSTTE). Springer-Verlag, 68–86.
https://doi.org/10.1007/978-3-030-63618-0_5

[33] Yevgeny Seldin, Csaba Szepesvári, Peter Auer, and Yasin Abbasi-Yadkori. 2013.
Evaluation and Analysis of the Performance of the EXP3 Algorithm in Stochastic
Environments. In Proceedings of Machine Learning Research (PMLR, Vol. 24). PMLR,
103–116. http://proceedings.mlr.press/v24/seldin12a.html

[34] Kostya Serebryany. 2017. OSS-Fuzz - Google’s continuous fuzzing service for
open source software. In USENIX Security (SEC). USENIX.

[35] Dongdong She, Abhishek Shah, and Suman Jana. 2022. Effective Seed Scheduling
for Fuzzing with Graph Centrality Analysis. In Security and Privacy (S&P). IEEE,
2194–2211. https://doi.org/10.1109/SP46214.2022.9833761

[36] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-

duction. MIT press.
[37] William R Thompson. 1933. On the likelihood that one unknown probability

exceeds another in view of the evidence of two samples. Biometrika 25, 3-4 (1933),
285–294.

[38] Jonas Benedict Wagner. 2017. Elastic Program Transformations: Automatically

Optimizing the Reliability/Performance Trade-off in Systems Software. Ph. D. Dis-
sertation. EPFL. https://doi.org/10.5075/epfl-thesis-7745

[39] Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V. Krishna-
murthy, and Nael Abu-Ghazaleh. 2021. SyzVegas: Beating Kernel Fuzzing Odds
with Reinforcement Learning. In USENIX Security (SEC). USENIX, 2741–2758.

[40] Jinghan Wang, Chengyu Song, and Heng Yin. 2021. Reinforcement Learning-
based Hierarchical Seed Scheduling for Greybox Fuzzing. In Network and Dis-

tributed System Security Symposium (NDSS). The Internet Society, 17 pages.
https://doi.org/10.14722/ndss.2021.24486

[41] Pengfei Wang and Xu Zhou. 2020. SoK: The Progress, Challenges, and Perspec-
tives of Directed Greybox Fuzzing. CoRR abs/2005.11907 (2020).

[42] Yan Wang, Peng Jia, Luping Liu, Cheng Huang, and Zhonglin Liu. 2020. A
systematic review of fuzzing based on machine learning techniques. PLOS ONE
15, 8 (2020), 1–37. https://doi.org/10.1371/journal.pone.0237749

[43] YanhaoWang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, DinghaoWu, and
Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by Coverage
Accounting for Input Prioritization. In Network and Distributed Systems Security

(NDSS). The Internet Society, 17 pages. https://doi.org/10.14722/ndss.2020.24422
[44] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.

Scheduling Black-Box Mutational Fuzzing. In Computer and Communications

Security (CCS). ACM, 511–522. https://doi.org/10.1145/2508859.2516736
[45] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Design-

ing New Operating Primitives to Improve Fuzzing Performance. In Computer

and Communications Security (CCS). ACM, 2313–2328. https://doi.org/10.1145/
3133956.3134046

[46] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou.
2020. EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant of the
Adversarial Multi-Armed Bandit. In USENIX Security (SEC). USENIX, 2307–2324.

[47] Michał Zalewski. 2015. American Fuzzy Lop (AFL). http://lcamtuf.coredump.cx/
afl/

https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml
https://doi.org/10.1145/3088510
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.14722/ndss.2019.23371
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1109/SPW.2018.00026
https://security.googleblog.com/2023/02/taking-next-step-oss-fuzz-in-2023.html
https://security.googleblog.com/2023/02/taking-next-step-oss-fuzz-in-2023.html
https://doi.org/10.1109/ICSE-Companion.2019.00096
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1145/3428334
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.14722/fuzzing.2022.23001
https://doi.org/10.1145/3270101.3270108
https://doi.org/10.1007/BF02289026
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3564625.3564659
https://doi.org/10.1109/TDSC.2022.3200525
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/3468264.3473932
https://nvd.nist.gov/vuln/detail/CVE-2019-7663
https://doi.org/10.48550/arXiv.1906.11133
https://doi.org/10.48550/arXiv.1906.11133
https://doi.org/10.1007/978-3-030-63618-0_5
http://proceedings.mlr.press/v24/seldin12a.html
https://doi.org/10.1109/SP46214.2022.9833761
https://doi.org/10.5075/epfl-thesis-7745
https://doi.org/10.14722/ndss.2021.24486
https://doi.org/10.1371/journal.pone.0237749
https://doi.org/10.14722/ndss.2020.24422
https://doi.org/10.1145/2508859.2516736
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1145/3133956.3134046
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

AsiaCCS ’24, July 01–05, 2024, Singapore Luo et al.

[48] Gen Zhang, Pengfei Wang, Tai Yue, Xiangdong Kong, Shan Huang, Xu Zhou,
and Kai Lu. 2022. MobFuzz: Adaptive Multi-objective Optimization in Gray-box
Fuzzing. In Network and Distributed Systems Security (NDSS). The Internet Society,
18 pages. https://doi.org/10.14722/ndss.2022.24314

[49] Han Zheng, Jiayuan Zhang, Yuhang Huang, Zezhong Ren, HeWang, Chunjie Cao,
Yuqing Zhang, Flavio Toffalini, and Mathias Payer. 2022. FishFuzz: Throwing
Larger Nets to Catch Deeper Bugs. CoRR abs/2207.13393 (2022). https://doi.org/
10.48550/arXiv.2207.13393

[50] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai
Chen. 2020. FuzzGuard: Filtering out Unreachable Inputs in Directed Grey-box
Fuzzing through Deep Learning. In USENIX Security (SEC). USENIX, 2255–2269.

A MAGMA SURVIVAL ANALYSIS

Following prior work [3, 17–19, 38], we model bug finding using
survival analysis. This allows us to reason about censored data;

i.e., the case where a fuzzer does not find a bug. Table 5 presents
the restricted mean survival time (RMST) of a given bug; i.e., the
mean time the bug “survives” being discovered by a fuzzer across
ten repeated 72 h campaigns. Lower RMSTs imply a fuzzer finds
a bug “faster”, while a smaller confidence interval (CI) means the
bug is found more consistently. Applying the log-rank test [26]
under the null hypothesis that two fuzzers share the same survival
function allows us to statistically compare survival times. Thus, two
fuzzers have statistically equivalent bug survival times if the log-
rank test’s 𝑝-value > 0.05. The survival analysis results in Table 5
augment those presented in the main paper.

https://doi.org/10.14722/ndss.2022.24314
https://doi.org/10.48550/arXiv.2207.13393
https://doi.org/10.48550/arXiv.2207.13393

Make out like a (Multi-Armed) Bandit: Improving the Odds of Fuzzer Seed Scheduling with T-Scheduler AsiaCCS ’24, July 01–05, 2024, Singapore

Table 5: Magma bugs triggered, presented as the restricted mean survival time (RMST; in hours) with 95% bootstrap CI. Bugs

never found by a particular fuzzer have an RMST of ⊤ (to distinguish bugs with a 72h RMST). Targets that fail to build with a

given fuzzer are marked with ✗. The best-performing fuzzer (fuzzers if the bug survival times are statistically equivalent per

the log-rank test) for each bug is highlighted in green (smaller is better).

Fuzzer

AFL++ T-SchedulerTarget Driver Bug
EXPLORE FAST COE QUAD LIN EXPLOIT MMOPT RARE K-Sched Tortoise Rare− Rare+ Sample

71.51 ⊤ ⊤ ⊤ ⊤ 70.53 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PNG001 ± 1.67 ± 5.00

14.40 0.01 0.01 7.21 28.80 0.01 7.21 7.21 0.01 0.01 0.01 0.01 0.01PNG003 ± 25.24 ± 0.00 ± 0.01 ± 14.11 ± 30.92 ± 0.01 ± 18.93 ± 17.28 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01

14.45 0.08 0.04 7.24 28.83 0.05 7.25 7.26 ⊤ ⊤ ⊤ ⊤ ⊤PNG006 ± 17.84 ± 0.05 ± 0.02 ± 12.76 ± 24.43 ± 0.03 ± 12.75 ± 12.75

39.28 35.25 51.15 38.13 47.51 26.85 42.04 52.84 68.36 70.22 28.31 30.63 28.02

libpng libpng_read_fuzzer

PNG007 ± 19.37 ± 13.41 ± 19.63 ± 21.00 ± 20.87 ± 14.18 ± 19.27 ± 18.18 ± 12.35 ± 6.03 ± 15.21 ± 14.04 ± 16.30

0.64 0.41 0.46 1.29 1.43 2.46 0.56 0.45 34.02 ⊤ 0.24 0.21 0.32SND001 ± 0.24 ± 0.11 ± 0.21 ± 0.52 ± 0.31 ± 1.64 ± 0.36 ± 0.17 ± 0.53 ± 0.08 ± 0.11 ± 0.08

0.97 0.78 1.09 3.92 2.88 6.57 1.51 1.02 ⊤ 2.82 0.41 0.55 0.48SND005 ± 0.27 ± 0.32 ± 0.42 ± 1.48 ± 1.07 ± 3.59 ± 0.68 ± 0.43 ± 1.20 ± 0.10 ± 0.24 ± 0.13

1.11 1.10 0.85 0.98 5.69 6.36 1.00 0.34 68.24 ⊤ 0.40 0.45 0.36SND006 ± 0.86 ± 1.23 ± 0.51 ± 0.46 ± 7.29 ± 2.68 ± 0.44 ± 0.14 ± 12.76 ± 0.14 ± 0.19 ± 0.08

0.70 0.85 0.46 1.27 1.57 2.86 1.27 0.66 56.23 ⊤ 0.60 0.80 0.79SND007 ± 0.32 ± 0.30 ± 0.27 ± 0.53 ± 0.61 ± 1.42 ± 0.56 ± 0.27 ± 15.46 ± 0.26 ± 0.18 ± 0.31

0.34 0.47 0.57 0.89 1.67 0.59 0.57 0.74 1.94 0.67 1.35 0.36 0.34SND017 ± 0.19 ± 0.31 ± 0.23 ± 0.69 ± 1.19 ± 0.15 ± 0.20 ± 0.41 ± 0.12 ± 0.13 ± 0.90 ± 0.31 ± 0.22

0.75 0.80 1.06 1.40 2.18 2.03 1.12 1.14 ⊤ ⊤ 2.96 3.36 2.63SND020 ± 0.30 ± 0.29 ± 0.21 ± 0.49 ± 0.83 ± 0.74 ± 0.25 ± 0.27 ± 0.93 ± 1.52 ± 0.96

0.59 0.38 0.30 0.98 0.93 2.62 0.97 0.34 60.41 ⊤ 0.38 0.45 0.35

libsndfile sndfile_fuzzer

SND024 ± 0.27 ± 0.27 ± 0.14 ± 0.46 ± 0.37 ± 1.27 ± 0.43 ± 0.14 ± 15.52 ± 0.15 ± 0.19 ± 0.08

60.02 60.46 60.19 65.84 66.72 62.47 56.93 58.95 ⊤ ⊤ 58.99 66.96 64.17TIF002 ± 15.10 ± 18.66 ± 10.33 ± 20.91 ± 11.50 ± 14.48 ± 15.73 ± 17.79 ± 13.38 ± 8.80 ± 12.92

0.07 0.08 0.04 0.12 0.06 0.05 0.03 0.04 1.66 4.45 0.03 0.04 0.02TIF007 ± 0.04 ± 0.03 ± 0.02 ± 0.14 ± 0.03 ± 0.02 ± 0.02 ± 0.03 ± 0.40 ± 1.58 ± 0.02 ± 0.03 ± 0.01

67.16 64.98 ⊤ ⊤ ⊤ 66.81 63.17 67.89 ⊤ ⊤ 66.63 ⊤ 64.90TIF008 ± 9.80 ± 23.84 ± 11.22 ± 17.41 ± 13.95 ± 14.58 ± 14.50

1.52 1.92 1.25 3.05 1.75 1.44 1.35 1.84 2.42 51.10 1.37 0.97 0.90TIF012 ± 0.56 ± 1.01 ± 0.34 ± 1.04 ± 0.35 ± 0.72 ± 0.36 ± 0.49 ± 0.54 ± 18.80 ± 0.66 ± 0.34 ± 0.39

5.63 2.72 4.17 4.12 3.11 2.49 3.68 1.59 ⊤ 64.30 2.15 3.85 2.04

tiff_read_rgba_fuzzer

TIF014 ± 2.44 ± 1.17 ± 1.69 ± 2.89 ± 2.39 ± 1.27 ± 2.52 ± 0.65 ± 19.23 ± 1.41 ± 2.27 ± 0.98

⊤ 68.29 ⊤ ⊤ ⊤ 69.71 70.72 66.34 ⊤ ⊤ 65.47 ⊤ 66.71TIF002 ± 12.58 ± 7.78 ± 4.35 ± 10.97 ± 15.84 ± 10.45

69.44 65.94 65.84 ⊤ 61.04 66.74 ⊤ ⊤ ⊤ ⊤ 68.74 ⊤ ⊤TIF005 ± 8.68 ± 20.57 ± 20.90 ± 22.01 ± 10.31 ± 11.05

22.19 22.62 13.46 51.00 46.21 31.89 16.42 12.05 64.89 41.90 14.92 20.82 20.53TIF006 ± 8.76 ± 13.97 ± 5.32 ± 17.15 ± 22.09 ± 14.87 ± 13.61 ± 4.82 ± 24.15 ± 17.22 ± 7.82 ± 12.40 ± 9.97

0.05 0.06 0.17 0.14 0.05 0.07 0.05 0.05 0.23 9.52 0.04 0.04 0.03TIF007 ± 0.03 ± 0.03 ± 0.16 ± 0.09 ± 0.03 ± 0.04 ± 0.03 ± 0.03 ± 0.11 ± 2.80 ± 0.02 ± 0.03 ± 0.02

65.04 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤TIF008 ± 23.61

28.49 30.93 25.45 37.69 33.09 23.03 18.79 19.39 3.29 10.62 14.31 33.37 33.77TIF009 ± 19.49 ± 20.82 ± 19.99 ± 17.37 ± 22.14 ± 18.04 ± 11.26 ± 14.14 ± 2.11 ± 1.53 ± 3.47 ± 15.03 ± 17.58

1.26 0.86 1.33 7.77 2.41 1.36 0.89 1.37 7.30 54.88 2.43 1.53 1.15TIF012 ± 0.30 ± 0.31 ± 0.51 ± 5.61 ± 1.05 ± 0.45 ± 0.22 ± 0.57 ± 5.82 ± 15.72 ± 0.99 ± 0.79 ± 0.39

4.06 3.18 1.80 9.53 3.93 2.48 1.32 1.05 5.68 61.01 1.29 0.93 0.87

libtiff

tiffcp

TIF014 ± 1.99 ± 1.49 ± 0.60 ± 7.82 ± 2.29 ± 1.06 ± 0.43 ± 0.33 ± 2.66 ± 15.90 ± 0.61 ± 0.44 ± 0.39

AsiaCCS ’24, July 01–05, 2024, Singapore Luo et al.

Table 5: Magma bugs (cont.).

Fuzzer

AFL++ T-SchedulerTarget Driver Bug
EXPLORE FAST COE QUAD LIN EXPLOIT MMOPT RARE K-Sched Tortoise Rare− Rare+ Sample

⊤ ⊤ 67.43 ⊤ ⊤ ⊤ 43.49 ⊤ ⊤ ⊤ ⊤ 65.80 65.02XML001 ± 8.15 ± 14.41 ± 8.42 ± 13.91

⊤ ⊤ ⊤ ⊤ 71.33 ⊤ 65.73 67.52 ⊤ ⊤ ⊤ 68.72 61.70XML002 ± 2.27 ± 21.28 ± 15.20 ± 11.15 ± 20.67

5.49 2.78 2.59 1.94 2.63 8.58 9.29 3.58 ⊤ ⊤ 4.93 1.69 2.84XML003 ± 2.49 ± 2.09 ± 0.92 ± 1.16 ± 0.80 ± 5.46 ± 12.41 ± 1.82 ± 2.74 ± 0.83 ± 1.21

1.11 1.52 1.43 2.45 5.16 4.83 8.16 1.82 ⊤ ⊤ 1.55 1.64 1.20XML009 ± 0.23 ± 0.48 ± 0.46 ± 0.92 ± 2.16 ± 1.73 ± 12.59 ± 0.88 ± 0.90 ± 0.91 ± 0.46

69.16 60.42 70.18 ⊤ 63.83 ⊤ 48.18 ⊤ ⊤ ⊤ ⊤ ⊤ 71.61XML012 ± 9.65 ± 11.63 ± 6.19 ± 12.93 ± 18.08 ± 1.33

0.02 0.02 0.02 0.04 0.06 0.02 7.21 0.03 0.02 0.03 0.02 0.02 0.03

xml_read_memory_fuzzer

XML017 ± 0.02 ± 0.02 ± 0.02 ± 0.06 ± 0.04 ± 0.02 ± 16.00 ± 0.02 ± 0.02 ± 0.03 ± 0.02 ± 0.01 ± 0.02

58.72 62.41 63.36 68.58 60.06 ⊤ 54.85 65.02 ⊤ ⊤ 62.34 52.02 57.17XML001 ± 11.70 ± 9.50 ± 7.42 ± 11.62 ± 16.06 ± 11.93 ± 10.46 ± 8.09 ± 11.68 ± 8.30

65.11 71.07 68.13 ⊤ 66.00 ⊤ ⊤ 66.75 ⊤ ⊤ 69.56 66.25 65.02XML002 ± 14.82 ± 3.16 ± 13.14 ± 20.38 ± 17.82 ± 8.29 ± 11.28 ± 23.70

1.47 2.03 2.01 5.89 6.37 6.17 2.30 2.70 66.68 ⊤ 1.11 0.93 0.64XML009 ± 0.72 ± 0.92 ± 0.80 ± 2.55 ± 2.64 ± 2.18 ± 1.27 ± 1.53 ± 9.16 ± 0.40 ± 0.46 ± 0.21

⊤ ⊤ 65.92 65.67 66.99 ⊤ 65.99 ⊤ ⊤ ⊤ ⊤ ⊤ 67.14XML012 ± 12.90 ± 21.48 ± 17.02 ± 20.39 ± 14.06

0.03 0.05 0.04 0.07 0.06 0.02 0.03 0.02 0.01 0.13 0.04 0.03 0.03

libxml2

xmllint

XML017 ± 0.02 ± 0.05 ± 0.03 ± 0.07 ± 0.04 ± 0.02 ± 0.02 ± 0.02 ± 0.02 ± 0.09 ± 0.03 ± 0.02 ± 0.02

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 67.10 69.76 71.10LUA002 ± 6.58 ± 7.61 ± 3.04

5.68 8.15 5.75 14.95 36.47 35.36 5.89 10.19 9.93 7.21 9.69 6.24 10.03lua lua
LUA004 ± 2.17 ± 2.27 ± 2.87 ± 5.97 ± 20.63 ± 9.31 ± 3.57 ± 4.25 ± 4.11 ± 17.28 ± 2.90 ± 2.08 ± 2.58

35.11 25.39 28.46 44.71 47.63 8.58 19.74 38.69 66.85 ⊤ 5.72 5.45 6.53SSL001 ± 12.55 ± 7.22 ± 9.54 ± 11.97 ± 13.78 ± 3.50 ± 6.45 ± 9.26 ± 17.47 ± 2.27 ± 2.84 ± 3.68

0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.16 0.26 0.06 0.07 0.07asn1
SSL003 ± 0.07 ± 0.06 ± 0.06 ± 0.06 ± 0.06 ± 0.05 ± 0.05 ± 0.05 ± 0.00 ± 0.00 ± 0.04 ± 0.08 ± 0.07

0.08 0.17 0.07 0.08 0.08 0.08 0.07 0.08 0.17 50.42 0.09 0.08 0.09
client SSL002 ± 0.06 ± 0.20 ± 0.05 ± 0.06 ± 0.06 ± 0.05 ± 0.05 ± 0.05 ± 0.00 ± 37.31 ± 0.08 ± 0.06 ± 0.06

0.11 0.11 0.12 0.16 0.11 0.12 0.16 0.11 0.22 0.35 0.11 0.11 0.12SSL002 ± 0.08 ± 0.08 ± 0.08 ± 0.09 ± 0.08 ± 0.08 ± 0.09 ± 0.08 ± 0.00 ± 0.00 ± 0.08 ± 0.08 ± 0.09

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 18.62 16.42 29.93 37.10 46.80server
SSL020 ± 4.02 ± 3.27 ± 16.92 ± 14.20 ± 16.06

⊤ 71.49 66.82 ⊤ ⊤ 64.89 ⊤ 54.42 ⊤ 27.31 ⊤ ⊤ ⊤

openssl

x509 SSL009 ± 1.74 ± 17.60 ± 12.55 ± 19.80 ± 17.28

57.62 70.00 49.60 57.61 ⊤ 48.32 65.14 51.48 ✗ 2.77 5.61 5.48 2.88PHP004 ± 28.19 ± 6.80 ± 23.07 ± 28.20 ± 16.34 ± 23.29 ± 27.52 ± 0.06 ± 3.11 ± 5.15 ± 2.54

56.61 30.29 49.65 68.83 61.50 15.25 27.63 33.01 ✗ 3.51 1.22 0.64 0.98PHP009 ± 17.72 ± 17.40 ± 24.01 ± 8.99 ± 14.04 ± 7.36 ± 19.74 ± 20.78 ± 0.22 ± 0.76 ± 0.28 ± 0.57

2.55 1.67 3.16 1.54 3.80 0.70 1.42 1.11 ✗ 2.23 0.13 0.21 0.22

php exif

PHP011 ± 1.37 ± 1.89 ± 2.88 ± 1.14 ± 3.16 ± 0.41 ± 1.03 ± 0.94 ± 0.03 ± 0.06 ± 0.07 ± 0.09

1.28 2.28 2.62 9.57 3.56 3.70 1.31 1.21 62.10 ⊤ 2.83 5.19 2.77SQL002 ± 0.50 ± 0.88 ± 1.98 ± 2.10 ± 0.99 ± 1.32 ± 0.63 ± 0.41 ± 19.45 ± 1.26 ± 1.63 ± 1.09

⊤ 68.65 ⊤ 68.44 66.47 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 69.81 71.67SQL003 ± 11.38 ± 12.09 ± 18.78 ± 7.45 ± 1.13

⊤ ⊤ ⊤ ⊤ 68.12 ⊤ 70.78 ⊤ ⊤ ⊤ 66.87 ⊤ ⊤SQL010 ± 13.19 ± 4.15 ± 17.42

48.45 56.60 63.50 ⊤ 54.90 ⊤ 61.02 60.32 ⊤ ⊤ 67.25 63.18 54.53SQL012 ± 14.52 ± 10.60 ± 13.57 ± 20.57 ± 9.13 ± 13.18 ± 9.35 ± 15.02 ± 23.44

⊤ 67.15 69.68 ⊤ 69.31 ⊤ ⊤ ⊤ ⊤ ⊤ 71.16 67.38 62.88SQL013 ± 8.35 ± 7.89 ± 7.06 ± 2.86 ± 9.07 ± 13.30

8.63 8.64 17.78 44.40 18.42 17.90 19.91 30.75 ⊤ ⊤ 13.94 29.72 15.60SQL014 ± 4.36 ± 2.56 ± 6.82 ± 13.27 ± 9.06 ± 9.91 ± 11.24 ± 10.16 ± 4.39 ± 10.17 ± 7.58

70.67 64.43 67.36 ⊤ 57.17 ⊤ 66.12 64.72 ⊤ ⊤ ⊤ 69.17 66.67SQL015 ± 4.50 ± 14.97 ± 15.75 ± 22.20 ± 12.17 ± 14.34 ± 9.61 ± 14.13

4.60 3.98 8.58 19.84 4.72 12.69 3.40 3.90 ⊤ ⊤ 5.64 5.41 6.21SQL018 ± 1.56 ± 1.64 ± 4.84 ± 10.26 ± 1.11 ± 4.12 ± 1.66 ± 1.99 ± 2.30 ± 1.50 ± 1.59

42.36 46.39 60.29 69.81 40.07 55.64 55.97 67.64 ⊤ ⊤ 61.24 59.17 64.01

sqlite3 sqlite3_fuzz

SQL020 ± 12.23 ± 14.82 ± 15.71 ± 7.45 ± 14.72 ± 21.97 ± 18.59 ± 7.93 ± 21.57 ± 15.05 ± 11.64

Make out like a (Multi-Armed) Bandit: Improving the Odds of Fuzzer Seed Scheduling with T-Scheduler AsiaCCS ’24, July 01–05, 2024, Singapore

Table 5: Magma bugs (cont.).

Fuzzer

AFL++ T-SchedulerTarget Driver Bug
EXPLORE FAST COE QUAD LIN EXPLOIT MMOPT RARE K-Sched Tortoise Rare− Rare+ Sample

⊤ 65.08 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ✗ ⊤ ⊤ ⊤ ⊤PDF001 ± 23.48

1.15 1.82 1.89 5.25 5.63 2.07 1.96 1.61 ✗ 0.10 0.99 1.23 1.24PDF010 ± 0.53 ± 0.50 ± 1.34 ± 2.81 ± 2.40 ± 2.03 ± 1.22 ± 0.56 ± 0.10 ± 0.47 ± 0.52 ± 0.69

65.59 ⊤ 66.53 60.79 ⊤ 65.88 ⊤ ⊤ ✗ ⊤ 67.01 65.70 55.79PDF011 ± 21.76 ± 18.57 ± 21.97 ± 20.79 ± 12.96 ± 21.39 ± 21.95

0.04 0.05 0.06 0.07 0.03 0.04 0.04 0.07 ✗ 0.25 0.04 0.04 0.05PDF016 ± 0.02 ± 0.03 ± 0.04 ± 0.09 ± 0.02 ± 0.02 ± 0.02 ± 0.04 ± 0.00 ± 0.02 ± 0.02 ± 0.03

37.84 40.38 38.25 ⊤ ⊤ 33.83 29.91 20.92 ✗ ⊤ 12.75 9.40 10.99PDF018 ± 22.46 ± 20.71 ± 19.84 ± 13.80 ± 16.76 ± 12.37 ± 6.18 ± 4.68 ± 5.44

⊤ ⊤ ⊤ ⊤ 69.39 62.62 ⊤ ⊤ ✗ ⊤ ⊤ ⊤ ⊤PDF019 ± 8.85 ± 21.37

52.56 ⊤ ⊤ 62.32 55.67 ⊤ 60.34 65.11 ✗ ⊤ 70.08 68.57 68.76

pdf_fuzzer

PDF021 ± 19.39 ± 13.10 ± 18.47 ± 23.04 ± 23.38 ± 6.50 ± 11.63 ± 10.99

⊤ ⊤ 65.84 ⊤ ⊤ ⊤ ⊤ ⊤ ✗ ⊤ ⊤ 65.56 65.57PDF002 ± 20.92 ± 21.87 ± 21.84

10.42 11.24 7.80 13.40 9.72 32.29 31.47 31.91 ✗ ⊤ 23.56 5.98 9.75PDF003 ± 5.69 ± 4.53 ± 2.47 ± 5.75 ± 3.65 ± 18.22 ± 16.99 ± 18.48 ± 11.40 ± 2.64 ± 4.05

67.30 47.78 50.65 64.93 ⊤ 70.10 59.23 56.30 ✗ 48.95 55.77 65.02 35.84PDF011 ± 15.96 ± 23.75 ± 21.96 ± 24.01 ± 6.46 ± 18.00 ± 22.15 ± 13.93 ± 22.48 ± 15.35 ± 17.81

0.03 0.01 0.03 0.02 0.03 0.02 0.03 0.02 ✗ 0.09 0.04 0.03 0.02PDF016 ± 0.02 ± 0.01 ± 0.02 ± 0.01 ± 0.02 ± 0.01 ± 0.02 ± 0.01 ± 0.06 ± 0.03 ± 0.02 ± 0.02

15.29 10.03 12.76 62.63 68.55 17.24 5.49 7.89 ✗ ⊤ 4.86 5.23 3.85PDF018 ± 9.90 ± 5.12 ± 3.98 ± 14.63 ± 9.41 ± 8.60 ± 3.25 ± 8.87 ± 1.36 ± 1.38 ± 1.57

59.02 46.57 59.70 64.94 ⊤ 65.11 65.89 67.23 ✗ ⊤ 59.00 59.37 ⊤PDF019 ± 25.54 ± 21.60 ± 24.13 ± 23.96 ± 23.39 ± 9.77 ± 10.93 ± 25.48 ± 24.76

68.11 56.31 57.63 53.10 64.80 60.48 60.53 ⊤ ✗ ⊤ ⊤ ⊤ ⊤

pdfimages

PDF021 ± 7.83 ± 22.81 ± 20.14 ± 19.80 ± 11.22 ± 17.74 ± 16.80

⊤ 69.18 ⊤ ⊤ ⊤ 66.84 70.95 ⊤ ✗ ⊤ ⊤ ⊤ ⊤PDF002 ± 9.57 ± 17.53 ± 3.55

⊤ ⊤ 66.15 ⊤ ⊤ ⊤ ⊤ ⊤ ✗ ⊤ ⊤ ⊤ ⊤PDF004 ± 12.04

37.74 47.02 39.42 ⊤ 67.36 62.16 43.73 57.99 ✗ ⊤ 65.15 68.07 69.96PDF006 ± 16.73 ± 17.98 ± 19.31 ± 15.77 ± 19.31 ± 15.04 ± 27.47 ± 13.44 ± 7.54 ± 6.93

3.21 2.98 2.51 3.79 4.14 2.79 3.01 2.08 ✗ 0.11 0.87 0.81 1.15PDF010 ± 1.70 ± 1.53 ± 0.90 ± 1.56 ± 2.63 ± 1.96 ± 1.40 ± 0.82 ± 0.08 ± 0.82 ± 0.41 ± 0.48

61.79 ⊤ 51.66 68.18 54.37 64.07 59.46 62.30 ✗ ⊤ 66.46 61.80 55.98PDF011 ± 20.01 ± 27.29 ± 12.97 ± 24.48 ± 16.67 ± 19.30 ± 19.04 ± 18.79 ± 20.31 ± 22.97

0.07 0.03 0.03 0.02 0.03 0.04 0.03 0.03 ✗ 0.19 0.04 0.07 0.04PDF016 ± 0.04 ± 0.02 ± 0.02 ± 0.02 ± 0.02 ± 0.02 ± 0.02 ± 0.02 ± 0.00 ± 0.04 ± 0.07 ± 0.03

29.16 22.78 21.64 65.46 65.66 61.72 24.27 22.05 ✗ ⊤ 8.02 7.30 8.73PDF018 ± 14.25 ± 16.31 ± 6.97 ± 22.20 ± 21.51 ± 17.43 ± 12.33 ± 8.44 ± 5.23 ± 2.37 ± 2.30

66.98 ⊤ 69.24 ⊤ 65.84 ⊤ ⊤ 64.85 ✗ ⊤ 66.97 69.87 ⊤PDF019 ± 17.05 ± 9.37 ± 12.95 ± 24.28 ± 17.06 ± 7.24

49.11 48.91 56.02 47.02 64.56 54.78 42.11 66.85 ✗ ⊤ 52.93 63.05 56.91

poppler

pdftoppm

PDF021 ± 22.90 ± 12.70 ± 16.93 ± 16.10 ± 11.22 ± 20.24 ± 18.53 ± 11.22 ± 18.80 ± 13.16 ± 21.43

	Abstract
	1 Introduction
	2 Background
	2.1 Fuzzing
	2.2 Seed Scheduling
	2.3 Reinforcement Learning

	3 Approach
	3.1 Notation and Definitions
	3.2 The T-Scheduler Algorithm
	3.3 Adapting the Beta-Bernoulli Bandit
	3.4 Rareness Correction
	3.5 Input Selection

	4 Evaluation
	4.1 Methodology
	4.2 Bug Discovery (RQ 1)
	4.3 Code Coverage (RQ 2)
	4.4 Scheduler Overheads (RQ 3)
	4.5 Ablation Study (RQ 4)

	5 Related Work
	6 Conclusions
	Acknowledgments
	References
	A Magma Survival Analysis

