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• Researcher with the Defence Science and Technology (DST)
Group

• PhD student at the Australian National University (ANU)
• S2E developer/maintainer
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Symbolic execution
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Introduction

What are typical approaches to
reversing malware?
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Introduction
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Introduction

Can we get the best of both worlds?
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Symbolic execution

Program analysis technique for systematically
exploring all paths through a program*

*Conditions apply
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Symbolic execution

• Program input is provided as a symbolic value rather than
concrete data

• Operations (e.g., addition, assignment, etc.) are performed on
these symbolic values to generate symbolic expressions

• Conditional statements result in an execution fork
• A constraint solver is invoked to find a solution to the

symbolic expressions (if one exists) and generates a concrete
input for the path explored
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An example1

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}

1“A Survey of Symbolic Execution Techniques”, R. Baldoni et al.
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An example

// a 7→ α, b 7→ β

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}
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An example

void foobar(int a, int b) {
// a 7→ α, b 7→ β, x 7→ 1, y 7→ 0
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
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An example

void foobar(int a, int b) {
int x = 1, y = 0;
// Two possible execution paths :
// 1. a 7→ ¬(α 6= 0), b 7→ β, x 7→ 1, y 7→ 0
// 2. a 7→ α 6= 0, b 7→ β, x 7→ 1, y 7→ 0
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}
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An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

// Path 1
// a 7→ ¬(α 6= 0), b 7→ β, x 7→ 1, y 7→ 0
// 1− 0 = 1 6= 0
assert(x - y != 0);

}

15

UNCLASSIFIED / Public Release



An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

// Path 2
// a 7→ α 6= 0, b 7→ β, x 7→ 1, y 7→ 3+ 1 = 4
y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}
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An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
// Two possible execution paths :
// 3. a 7→ α 6= 0, b 7→ ¬(β = 0), x 7→ 1, y 7→ 4
// 4. a 7→ α 6= 0, b 7→ β = 0, x 7→ 1, y 7→ 4
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}
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An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

// Path 3
// a 7→ α 6= 0, b 7→ ¬(β = 0), x 7→ 1, y 7→ 4
// 1− 4 = −3 6= 0
assert(x - y != 0);

}
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An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

// Path 4
// a 7→ α 6= 0, b 7→ β = 0,
// x 7→ 2× [(α 6= 0) + (β = 0)], y 7→ 4
x = 2 * (a + b);

}
}

assert(x - y != 0);
}
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An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

// a 7→ α 6= 0, b 7→ β = 0,
// x 7→ 2× [(α 6= 0) + (β = 0)], y 7→ 4
assert(x - y != 0);

}
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An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

// 2× [(α 6= 0) + (β = 0)]− 4 = 0
// a 7→ 2, b 7→ 0
assert(x - y != 0);

}
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An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}

// All paths (×4) explored
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S2E
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Available tools

Many symbolic execution engines available

Dynamic Binary Analysis

S2E
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Dynamic Binary Analysis
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S2E introduction

S2E is a platform for in-vivo
multi-path analysis of software systems
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S2E introduction

S2E is a platform for in-vivo
multi-path analysis of software systems
• Extensible
• Write your own tools
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S2E introduction

S2E is a platform for in-vivo
multi-path analysis of software systems
• On real OSes, with real apps, libraries, drivers
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S2E introduction

S2E is a platform for in-vivo
multi-path analysis of software systems
• Symbolic execution
• Concolic execution
• State merging
• Fuzzing
• ...
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S2E introduction

S2E is a platform for in-vivo
multi-path analysis of software systems
• Bug finding
• Verification
• Testing
• Security checking
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S2E introduction

S2E is a platform for in-vivo
multi-path analysis of software systems
• Pretty much anything that runs on a computer
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S2E architecture

• S2E uses QEMU
• S2E intercepts and replaces

/dev/kvm

• QEMU’s dynamic binary
translator translates guest
instructions to LLVM

• LLVM instructions
symbolically executed by
KLEE
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S2E architecture

Path selection plugins
• What input to make

symbolic?
• What input to make

concrete?
• Search heuristics

Analysis plugins
• Check for crashes
• Check for vulnerability

conditions
• Performance measurements
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Why S2E?

• Works on unmodified binaries
• Operates at any level of the software stack
• Does not require environment modelling

Perfect for malware analysis
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Trigger-based malware
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Trigger-based malware

“Hidden behavior/certain code paths
that are only executed under certain

trigger conditions” 2

2“Automatically Identifying Trigger-based Behavior in Malware”, D. Brumley et al.
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Trigger examples

• Internet connectivity
• Mutex objects
• Existence of files
• Existence of Registry entries
• Data read from a file
• ...
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Trigger example – time 3

SYSTEMTIME systime;
LPCSTR site = "https://federation.edu.au/icsl/mre2019";

GetLocalTime(&systime);

if (9 == systime.wDay) {
if (10 == systime.wHour) {

if (11 == systime.wMonth) {
if (6 == systime.wMinute) {

ddos(site);
}

}
}

}

3“Automatically Identifying Trigger-based Behavior in Malware”, D. Brumley et al.
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Trigger example – network
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Analyzing trigger-based malware

Why is it hard?

• Typical dynamic analysis cannot determine the trigger
conditions to go down the correct path

• Code may be obfuscated, so hard to determine trigger
conditions statically

Symbolic execution can help
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Analyzing trigger-based malware with S2E

35

UNCLASSIFIED / Public Release



Why not fuzz?

Possible approach:
1. Identify trigger types of interest (e.g., time, network, etc.)

2. Generate random trigger inputs
3. goto 2 until trigger condition is met

Problems:
• Highly inefficient – small probability of guessing the exact

trigger value
• Not interested in exploring program – only in the trigger path
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Symbolic execution approach

1. Identify trigger types of interest (e.g., time, network, etc.)
2. Represent trigger inputs symbolically
3. Collect constraints and fork at conditional statements
4. Solve constraints → trigger values
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S2E approach

1. Hook trigger sources (e.g., GetLocalTime,
InternetOpenURL, etc.)

2. Make return value symbolic (via S2E API)

S2E handles everything else

Hook with EasyHook (https://easyhook.github.io/)

38
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S2E example – time

SYSTEMTIME systime;
LPCSTR site = "https://federation.edu.au/icsl/mre2019";

GetLocalTime(&systime);

if (9 == systime.wDay) {
if (10 == systime.wHour) {

if (11 == systime.wMonth) {
if (6 == systime.wMinute) {

ddos(site);
}

}
}

}
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S2E example – time

#include <s2e/s2e.h>

static void WINAPI GetLocalTimeHook(
LPSYSTEMTIME lpSystemTime) {

// Get concrete value
GetLocalTime(lpSytemTime);

// Make symbolic
S2EMakeSymbolic(lpSystemTime ,

sizeof(*lpSystemTime),
"systime");

}

// TODO: Initialize EasyHook
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S2E example – time
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S2E example – time

S2E produces the following trigger input:
v0_systime_0 = {0x0, 0x0, /* wYear */

0xb, 0x0, /* wMonth */
0x0, 0x0, /* wDayOfWeek */
0x9, 0x0, /* wDay */
0xa, 0x0, /* wHour */
0x6, 0x0, /* wMinute */
0x0, 0x0, /* wSecond */
0x0, 0x0} /* wMilliseconds */

This is a byte-level representation of expected constraints:

systime.wDay = 9∧ systime.wHour = 10
∧ systime.wMonth = 11∧ systime.wMinute = 6
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S2E example – WannaCry
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S2E example – WannaCry

static std::set<HINTERNET > dummyHandles;

static HINTERNET WINAPI InternetOpenUrlAHook(
HINTERNET hInternet , /* ... */ ) {

UINT8 returnResource = S2ESymbolicChar("hInternet", 1);
if (returnResource) {

// Create and return a dummy handle
HINTERNET resourceHandle = (HINTERNET) malloc(

sizeof(HINTERNET));
dummyHandles.insert(resourceHandle);
return resourceHandle;

} else {
// Simulate InternetOpenUrlA "failing"
return NULL;

}
}
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S2E example – WannaCry

static BOOL WINAPI InternetCloseHandleHook(
HINTERNET hInternet) {

std::set<HINTERNET >::iterator it =
dummyHandles.find(hInternet);

if (it == dummyHandles.end()) {
// Could be real a real handle
return InternetCloseHandle(hInternet);

} else {
// A dummy handle
free(*it);
dummyHandles.erase(it);
return TRUE;

}
}
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S2E example – WannaCry
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Conclusion

• Recreated David Brumley’s paper in S2E
• Explore more of the program than a typical dynamic analysis
• Scalability is an issue

All material available at
https://github.com/adrianherrera/malware-s2e

Questions?
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