
Analyzing trigger-based malware with S2E

Adrian Herrera
0xadr1an

Defence Science and Technology Group

April 25, 2023

UNCLASSIFIED



$ whoami

• Researcher with the Defence Science and Technology (DST)
Group

• PhD student at the Australian National University (ANU)
• S2E developer/maintainer

2

UNCLASSIFIED / Public Release



Outline

1. Symbolic execution

2. S2E

3. Trigger-based malware

4. Analyzing trigger-based malware with S2E

3

UNCLASSIFIED / Public Release



Symbolic execution

4

UNCLASSIFIED / Public Release



Introduction

What are typical approaches to
reversing malware?

5

UNCLASSIFIED / Public Release



Introduction

6

UNCLASSIFIED / Public Release



Introduction

7

UNCLASSIFIED / Public Release



Introduction

Can we get the best of both worlds?

8

UNCLASSIFIED / Public Release



Symbolic execution

Program analysis technique for systematically
exploring all paths through a program*

*Conditions apply

9

UNCLASSIFIED / Public Release



Symbolic execution

Program analysis technique for systematically
exploring all paths through a program*

*Conditions apply

9

UNCLASSIFIED / Public Release



Symbolic execution

• Program input is provided as a symbolic value rather than
concrete data

• Operations (e.g., addition, assignment, etc.) are performed on
these symbolic values to generate symbolic expressions

• Conditional statements result in an execution fork
• A constraint solver is invoked to find a solution to the

symbolic expressions (if one exists) and generates a concrete
input for the path explored

10

UNCLASSIFIED / Public Release



An example1

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}

1“A Survey of Symbolic Execution Techniques”, R. Baldoni et al.
11

UNCLASSIFIED / Public Release



An example

// a 7→ α, b 7→ β

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}

12

UNCLASSIFIED / Public Release



An example

void foobar(int a, int b) {
// a 7→ α, b 7→ β, x 7→ 1, y 7→ 0
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}

13

UNCLASSIFIED / Public Release



An example

void foobar(int a, int b) {
int x = 1, y = 0;
// Two possible execution paths :
// 1. a 7→ ¬(α 6= 0), b 7→ β, x 7→ 1, y 7→ 0
// 2. a 7→ α 6= 0, b 7→ β, x 7→ 1, y 7→ 0
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}

14

UNCLASSIFIED / Public Release



An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

// Path 1
// a 7→ ¬(α 6= 0), b 7→ β, x 7→ 1, y 7→ 0
// 1− 0 = 1 6= 0
assert(x - y != 0);

}

15

UNCLASSIFIED / Public Release



An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

// Path 2
// a 7→ α 6= 0, b 7→ β, x 7→ 1, y 7→ 3+ 1 = 4
y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}

16

UNCLASSIFIED / Public Release



An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
// Two possible execution paths :
// 3. a 7→ α 6= 0, b 7→ ¬(β = 0), x 7→ 1, y 7→ 4
// 4. a 7→ α 6= 0, b 7→ β = 0, x 7→ 1, y 7→ 4
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}

17

UNCLASSIFIED / Public Release



An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

// Path 3
// a 7→ α 6= 0, b 7→ ¬(β = 0), x 7→ 1, y 7→ 4
// 1− 4 = −3 6= 0
assert(x - y != 0);

}

18

UNCLASSIFIED / Public Release



An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

// Path 4
// a 7→ α 6= 0, b 7→ β = 0,
// x 7→ 2× [(α 6= 0) + (β = 0)], y 7→ 4
x = 2 * (a + b);

}
}

assert(x - y != 0);
}

19

UNCLASSIFIED / Public Release



An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

// a 7→ α 6= 0, b 7→ β = 0,
// x 7→ 2× [(α 6= 0) + (β = 0)], y 7→ 4
assert(x - y != 0);

}

20

UNCLASSIFIED / Public Release



An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

// 2× [(α 6= 0) + (β = 0)]− 4 = 0
// a 7→ 2, b 7→ 0
assert(x - y != 0);

}

21

UNCLASSIFIED / Public Release



An example

void foobar(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3 + x;
if (b == 0) {

x = 2 * (a + b);
}

}

assert(x - y != 0);
}

// All paths (×4) explored

22

UNCLASSIFIED / Public Release



S2E

23

UNCLASSIFIED / Public Release



Available tools

Many symbolic execution engines available

Dynamic Binary Analysis

S2E

24

UNCLASSIFIED / Public Release



Available tools

Many symbolic execution engines available

Dynamic Binary Analysis

S2E
24

UNCLASSIFIED / Public Release



Available tools

Many symbolic execution engines available

Dynamic Binary Analysis

S2E
24

UNCLASSIFIED / Public Release



S2E introduction

S2E is a platform for in-vivo
multi-path analysis of software systems

25

UNCLASSIFIED / Public Release



S2E introduction

S2E is a platform for in-vivo
multi-path analysis of software systems
• Extensible
• Write your own tools

25

UNCLASSIFIED / Public Release



S2E introduction

S2E is a platform for in-vivo
multi-path analysis of software systems
• On real OSes, with real apps, libraries, drivers

25

UNCLASSIFIED / Public Release



S2E introduction

S2E is a platform for in-vivo
multi-path analysis of software systems
• Symbolic execution
• Concolic execution
• State merging
• Fuzzing
• ...

25

UNCLASSIFIED / Public Release



S2E introduction

S2E is a platform for in-vivo
multi-path analysis of software systems
• Bug finding
• Verification
• Testing
• Security checking

25

UNCLASSIFIED / Public Release



S2E introduction

S2E is a platform for in-vivo
multi-path analysis of software systems
• Pretty much anything that runs on a computer

25

UNCLASSIFIED / Public Release



S2E architecture

• S2E uses QEMU
• S2E intercepts and replaces

/dev/kvm

• QEMU’s dynamic binary
translator translates guest
instructions to LLVM

• LLVM instructions
symbolically executed by
KLEE

26

UNCLASSIFIED / Public Release



S2E architecture

Path selection plugins
• What input to make

symbolic?
• What input to make

concrete?
• Search heuristics

Analysis plugins
• Check for crashes
• Check for vulnerability

conditions
• Performance measurements

27

UNCLASSIFIED / Public Release



Why S2E?

• Works on unmodified binaries
• Operates at any level of the software stack
• Does not require environment modelling

Perfect for malware analysis

28

UNCLASSIFIED / Public Release



Why S2E?

• Works on unmodified binaries
• Operates at any level of the software stack
• Does not require environment modelling

Perfect for malware analysis

28

UNCLASSIFIED / Public Release



Trigger-based malware

29

UNCLASSIFIED / Public Release



Trigger-based malware

“Hidden behavior/certain code paths
that are only executed under certain

trigger conditions” 2

2“Automatically Identifying Trigger-based Behavior in Malware”, D. Brumley et al.
30

UNCLASSIFIED / Public Release



Trigger examples

• Internet connectivity
• Mutex objects
• Existence of files
• Existence of Registry entries
• Data read from a file
• ...

31

UNCLASSIFIED / Public Release



Trigger example – time 3

SYSTEMTIME systime;
LPCSTR site = "https://federation.edu.au/icsl/mre2019";

GetLocalTime(&systime);

if (9 == systime.wDay) {
if (10 == systime.wHour) {

if (11 == systime.wMonth) {
if (6 == systime.wMinute) {

ddos(site);
}

}
}

}

3“Automatically Identifying Trigger-based Behavior in Malware”, D. Brumley et al.
32

UNCLASSIFIED / Public Release



Trigger example – network

33

UNCLASSIFIED / Public Release



Analyzing trigger-based malware

Why is it hard?

• Typical dynamic analysis cannot determine the trigger
conditions to go down the correct path

• Code may be obfuscated, so hard to determine trigger
conditions statically

Symbolic execution can help

34

UNCLASSIFIED / Public Release



Analyzing trigger-based malware

Why is it hard?

• Typical dynamic analysis cannot determine the trigger
conditions to go down the correct path

• Code may be obfuscated, so hard to determine trigger
conditions statically

Symbolic execution can help

34

UNCLASSIFIED / Public Release



Analyzing trigger-based malware

Why is it hard?

• Typical dynamic analysis cannot determine the trigger
conditions to go down the correct path

• Code may be obfuscated, so hard to determine trigger
conditions statically

Symbolic execution can help

34

UNCLASSIFIED / Public Release



Analyzing trigger-based malware with S2E

35

UNCLASSIFIED / Public Release



Why not fuzz?

Possible approach:
1. Identify trigger types of interest (e.g., time, network, etc.)

2. Generate random trigger inputs
3. goto 2 until trigger condition is met

Problems:
• Highly inefficient – small probability of guessing the exact

trigger value
• Not interested in exploring program – only in the trigger path

36

UNCLASSIFIED / Public Release



Why not fuzz?

Possible approach:
1. Identify trigger types of interest (e.g., time, network, etc.)

2. Generate random trigger inputs
3. goto 2 until trigger condition is met

Problems:
• Highly inefficient – small probability of guessing the exact

trigger value
• Not interested in exploring program – only in the trigger path

36

UNCLASSIFIED / Public Release



Symbolic execution approach

1. Identify trigger types of interest (e.g., time, network, etc.)
2. Represent trigger inputs symbolically
3. Collect constraints and fork at conditional statements
4. Solve constraints → trigger values

37

UNCLASSIFIED / Public Release



S2E approach

1. Hook trigger sources (e.g., GetLocalTime,
InternetOpenURL, etc.)

2. Make return value symbolic (via S2E API)

S2E handles everything else

Hook with EasyHook (https://easyhook.github.io/)

38

UNCLASSIFIED / Public Release

https://easyhook.github.io/


S2E approach

1. Hook trigger sources (e.g., GetLocalTime,
InternetOpenURL, etc.)

2. Make return value symbolic (via S2E API)

S2E handles everything else

Hook with EasyHook (https://easyhook.github.io/)

38

UNCLASSIFIED / Public Release

https://easyhook.github.io/


S2E approach

1. Hook trigger sources (e.g., GetLocalTime,
InternetOpenURL, etc.)

2. Make return value symbolic (via S2E API)

S2E handles everything else

Hook with EasyHook (https://easyhook.github.io/)

38

UNCLASSIFIED / Public Release

https://easyhook.github.io/


S2E example – time

SYSTEMTIME systime;
LPCSTR site = "https://federation.edu.au/icsl/mre2019";

GetLocalTime(&systime);

if (9 == systime.wDay) {
if (10 == systime.wHour) {

if (11 == systime.wMonth) {
if (6 == systime.wMinute) {

ddos(site);
}

}
}

}

39

UNCLASSIFIED / Public Release



S2E example – time

#include <s2e/s2e.h>

static void WINAPI GetLocalTimeHook(
LPSYSTEMTIME lpSystemTime) {

// Get concrete value
GetLocalTime(lpSytemTime);

// Make symbolic
S2EMakeSymbolic(lpSystemTime ,

sizeof(*lpSystemTime),
"systime");

}

// TODO: Initialize EasyHook

40

UNCLASSIFIED / Public Release



S2E example – time

41

UNCLASSIFIED / Public Release



S2E example – time

S2E produces the following trigger input:
v0_systime_0 = {0x0, 0x0, /* wYear */

0xb, 0x0, /* wMonth */
0x0, 0x0, /* wDayOfWeek */
0x9, 0x0, /* wDay */
0xa, 0x0, /* wHour */
0x6, 0x0, /* wMinute */
0x0, 0x0, /* wSecond */
0x0, 0x0} /* wMilliseconds */

This is a byte-level representation of expected constraints:

systime.wDay = 9∧ systime.wHour = 10
∧ systime.wMonth = 11∧ systime.wMinute = 6

42

UNCLASSIFIED / Public Release



S2E example – WannaCry

43

UNCLASSIFIED / Public Release



S2E example – WannaCry

static std::set<HINTERNET > dummyHandles;

static HINTERNET WINAPI InternetOpenUrlAHook(
HINTERNET hInternet , /* ... */ ) {

UINT8 returnResource = S2ESymbolicChar("hInternet", 1);
if (returnResource) {

// Create and return a dummy handle
HINTERNET resourceHandle = (HINTERNET) malloc(

sizeof(HINTERNET));
dummyHandles.insert(resourceHandle);
return resourceHandle;

} else {
// Simulate InternetOpenUrlA "failing"
return NULL;

}
}

44

UNCLASSIFIED / Public Release



S2E example – WannaCry

static BOOL WINAPI InternetCloseHandleHook(
HINTERNET hInternet) {

std::set<HINTERNET >::iterator it =
dummyHandles.find(hInternet);

if (it == dummyHandles.end()) {
// Could be real a real handle
return InternetCloseHandle(hInternet);

} else {
// A dummy handle
free(*it);
dummyHandles.erase(it);
return TRUE;

}
}

45

UNCLASSIFIED / Public Release



S2E example – WannaCry

46

UNCLASSIFIED / Public Release



Conclusion

• Recreated David Brumley’s paper in S2E
• Explore more of the program than a typical dynamic analysis
• Scalability is an issue

All material available at
https://github.com/adrianherrera/malware-s2e

Questions?

47

UNCLASSIFIED / Public Release

https://github.com/adrianherrera/malware-s2e


Conclusion

• Recreated David Brumley’s paper in S2E
• Explore more of the program than a typical dynamic analysis
• Scalability is an issue

All material available at
https://github.com/adrianherrera/malware-s2e

Questions?

47

UNCLASSIFIED / Public Release

https://github.com/adrianherrera/malware-s2e

	Symbolic execution
	S2E
	Trigger-based malware
	Analyzing trigger-based malware with S2E

