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Cons

● Incomplete
● Requires buildable target
● Scalability
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Our first fuzzer

A classic generational blackbox fuzzer



“An Empirical Study of the Reliability of Unix Utilities”

● Class project in 1988 
“Advanced Operating 
Systems” course @ 
University Wisconsin

● Later published in 1990
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● Only detect SIGSEGV
○ Add a sanitizer

Blackbox fuzzing

Mutational coverage-guided fuzzer
aka

greybox fuzzer
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Where do these initial inputs come 
from?
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Seed selection

● Empty = easy to compare fuzzers
○ Only good for finding shallow bugs

● Too large corpus = slow fuzzer

● Sweet spot: Use a corpus minimizer
○ Doesn’t matter which one
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Greybox fuzzing

Select input

● Rather than generating random 
data, mutate existing data

How long do we focus on a seed?

How do we select this seed?



Power scheduling

● Power schedule = amount of 
energy assigned to an input
○ Decrease energy each execution
○ When energy = 0, change inputs

● Examples
○ Markov chain
○ Multi-arm bandit
○ Machine learning
○ Heuristics
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Mutate input

● Mutate enough to explore 
“interesting” states

● Don’t mutate too much, or we’ll just 
error out

Where and how do we mutate?
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● Many targets (e.g., JavaScript 
interpreter) accept input described by 
a context-free grammar (CFG)
○ Highly structured
○ Blind mutation will destroy structure

● Leverage CFG in mutation
○ “Lift” input to parse tree
○ Mutate parse tree(s)
○ Lower parse tree back to file

Grammar-based fuzzing
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Grammar-based fuzzing

Pros

● Reach “deeper” code
● Can be used without coverage

Cons

● Require a priori knowledge of input format

Some fuzzers try to “learn” this input format



Greybox fuzzing

Execute target

● Measure fuzzer “progress”

● Progress = code coverage



Coverage map

● Edge coverage is standard

● What if # edges > sizeof(cov_map)?
○ Must approximate
○ AFL uses a (lossy) hash function

● What if source is not available?
○ Use binary instrumentation (e.g., Intel PIN, DynamoRIO)
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Edge coverage is a (relatively) poor 
approximation of a program’s state 
space
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● Context-sensitive edge
● Path
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Coverage map

Edge coverage is a (relatively) poor 
approximation of a program’s state 
space

Alternatives:

● Context-sensitive edge
● Path
● Data flow

Accuracy vs performance
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Greybox fuzzing

Does it crash?

● Classic memory-safety violation
○ SIGSEGV

What about other bug types?
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be defined and checked at runtime
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What can we check for?



Sanitization

Anything we can encode as an invariant

● Address Sanitizer (ASan)
● Undefined behavior Sanitizer (UBSan)
● Memory Sanitizer (MSan)
● LeakSanitizer (LSan)
● ThreadSanitizer (TSan)



Greybox fuzzing

Does it find new coverage?

● Save input

● Return to start



What about…

● Non-file, non-*nix fuzzing
○ E.g., network services, OS kernel, IoT, …

● Overcoming “roadblocks”
○ E.g., complex conditionals



*nix file fuzzing

● Primary focus of academic research

● Assumes an “obvious” entry point
○ AFL-style fuzzing: main + fread
○ libFuzzer: dedicated LLVMFuzzerTestOneInput

● Commonly assumes source code



*nix file fuzzing

● Primary focus of academic research

● Assumes an “obvious” entry point
○ AFL-style fuzzing: main + fread
○ libFuzzer: dedicated LLVMFuzzerTestOneInput

● Commonly assumes source code

What is the entry point for a network service / OS kernel / IoT 
device? 🤔



Network apps

Challenges

● State
● Setup/teardown connection cost
● What is “coverage”?

Solutions

● Snapshots
○ No need to start from scratch each time

● Annotate/infer states



OS kernel

Challenges

● Measuring coverage
● Performance
● Seeds?

Solutions

● kCOV + kASan
● Hypervisor + PMU
● Seeds = syscall traces



IoT

Challenges

● Measuring coverage
● Performance
● Seeds?

Solutions

● QEMU (slow / incomplete)
● Avatar2 orchestration



Overcoming “roadblocks”

Program constraints that are hard to 
meet

Solutions

● Whitebox fuzzing
● Concolic execution
● Rewrite the target 🧐



Whitebox fuzzing

Symbolic execution

● Translate expressions into symbolic formulae
● Program paths accumulate formulae into constraints
● Constraints are solved (via a SAT / SMT solver)

Challenges

● Expensive / slow
● Modeling “external environment”



Concolic fuzzing

Concolic = concrete + symbolic

● Symbolic values augmented with concrete values
● Can always fall back to concrete values

Solutions

● Angora: Treat solver as optimization problem
● SymCC: Compiles concolic executor into the binary
● JIGSAW: JIT compile constraints 🤯 
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● Benchmarking fuzzers?
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Conclusions

● Fuzzing research has progressed in leaps and bounds
○ No longer just “file-based + *nix-based”

● Still many open problems

● Balance between performance and accuracy




