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Pros

e No false positives
e Produces PoC
e Scalable

Cons

e Incomplete
e Requires buildable target
e Scalability
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Our first fuzzer

A classic generational blackbox fuzzer



Class project in 1988
“Advanced Operatin
Systems” course @
University Wisconsin

Later published in 19

hen we wse basic oper-
ating. system il
such as the kernel
major utlity programs,
we expect a high degrec
of rcliability. These

parts of the system are used fre-

quently and this frequent use im-

28

make a systematic statement about

Unix operating system. The project

1 four steps: (1) pro-
grams were constructed to generate
random characters, and to help test
interactive utilities: (2) these pro-
grams were used (o test a large
number of 1 random
input strings 1 sec if they crashed;
(3) the strings (or types of strings)
that crash these programs were
identified; and (4) the causes of the

‘An Empirical Study of the Reliability of Unix Utilities

10 the Internet worm (the “gets fin-
ger” bug) [23) We have found ad-
ditional bugs that might indicate
future security holes. Third, some

some strange and unexpected cr-
rors were uncovered by this
method of tesiing. Fourth, we
sometimes inadvertently feed pro-
grams noisy input (c.g. ying

the correctness of a program, we
should probably use some form of

nology for program verification is

advancing, it has not yet reached

the point where it is easy o apph

o commonly applied) to large sys-
s,

nt experience led us 10 be-
lieve that, while formal verification

was 100 onerous a task,
there was stilla nced for some form
of more completc_testing: On a
dark and stormy night one of the
authors was logged on o his work-
station on a dial-up linc from home
and had affected the
phone lines; there were. frequens

could ype 3 senaible uquenos of

eharacters before the nois

bled the command. This line noisc

but we were

< spuriouschar-
programs to

not crash (“core dump”); on receiv-
ing unusual input, they might exit
it minimal eror messages. but
they should not erash. This experi-
ence Ted us 10 believe that there
‘might be serious bugs lurking in the
systems that we regularly used.
This scenario motivated a sys-
tematic test of the wlity programs
running on various versions of the

program crashes were identified
and the common mistakes that
cause these crashes were catego
vized. As a result of testing almost
90 different utility programs on
seven versions of Unix™, we were
able 1o crash more than 24% of
these programs. Our e

cluded versians of Unix that under-
went commercial product testing. A
byproduct of this project is a list of
bug reports (and fixes) for the
crashed programs and a set of tools

am testing and verifica-
tion. Our approach is not a substi-
tute for a formal verificai

testing procedures, but rather an

definitly). Our goal is to comple-
ment, not replace, existing test pro-
edures.

This type of study is important
for several reasons: First, it contri-
utes 10 the testing community &
large list of real bugs. These bugs
can provide test cases against which
researchers can evaluate more so-
phisticated testing and verification
srstegies. Second. ane of te bugs
thar e found, was carmed by
ramring pracice that
pelog e security holes

o s 3 rademark of AT&T Bell Liborate:

edit or view an object module). In
these cases, we would like some
meaningful and predictable re-
sponse. Fifth, noisy phone lines are
a reality, and major utilities (like
shells and editors) should not crash
because of them. Last, we were in-
terested in he interactions between

While our testing suategy sourds
somewhat naive, its ability 1o dis-
cover fatal program bugs is impres-
sive. If we consider a program o be
a complex finite state machine,
then our testing strategy can be
thought of as a random walk
through the state space, searching
for undefined states. Similar tech-
niques have been used in arcas such
as network protocols and CPU
cache testing. When testing net-
work protocols, a module can be
inserted in the data stream. This
module randomly perturbs the
packets (either destroying them or
modifying them) 1 test the proto-
coFs error detection and recovery
features. Random testing has been
used in evaluating complex.hard-
ware, such as multiprocessor cache
coherence protocols [4]. The state
space of the device, when combine
with the memory architecture, is
large enough that it is difficult to
generate systematic tests. In the
multiprocessor example, random
generation of test cases helped
cover a large part of the state space
and simplify the generation of
ases.

Ull"lLlﬂE—_-

Barton P. Miller, Lars Fredriksen and Bryan So

Study of the
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e Generate mostly rubbish

e No notion of “progress”

e Only detect SIGSEGV
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Blackbox fuzzing

Cons

e Only detect SIGSEGV
o Add a sanitizer
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Blackbox fuzzing

Cons

o Generate mutate

o Add a feedback loop _ )
Mutational coverage-guided fuzzer

aka
greybox fuzzer
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Greybox fuzzing
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Greybox fuzzing

american fuzzy lop 0.47b (readpng)
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Select input

e Rather than generating random
data, mutate existing data

Where do these initial inputs come
from?



Seed selection

e In academic evaluations: “empty seed” common

e In practice: large corpora



Seed selection

e In academic evaluations: “empty seed” common

e In practice: large corpora

Which is better?



Seed selection

Optimizing Seed Selection for Fuzzing

Alexandre Rebert?$ Sang Kil ¢
alex@forallsecure.com  sangkilc@cr
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# Carnegie Mellon University
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Abstract

Randomly mutating well-formed program inputs
ply fuzzing, is a highly effective and widely used s
to find bugs in software. Other than showing fuzzc
bugs, there has been little systematic effort in unde
ing the science of how to fuzz properly. In this
we focus on how to mathematically formulate and
about one critical aspect in fuzzing: how best to pic
files to maximize the total number of bugs found
a fuzz campaign. We design and evaluate six di
algorithms using over 650 CPU days on Amazo
tic Compute Cloud (EC2) to provide ground trui
Overall, we find 240 bugs in 8 applications and she
the choice of algorithm can greatly increase the ©
of bugs found. We also show that current seed se
strategies as found in Peach may fare no better th
ing seeds at random. We make our data set an
publicly available.

1 Introduction

Software bugs are expensive. A single softwai
is enough to take down spacecrafts [2], make 1
centrifuges spin out of control [17], or recall 100,0
faulty cars resulting in billions of dollars in dama,
In 2012, the software security market was estim
$19.2 billion [12], and recent forecasts predict a
increase in the future despite a sequestering econon
‘The need for finding and fixing bugs in software
they are exploited by attackers has led to the develc
of sophisticated automatic software testing tools.
Fuzzing is a popular and effective choice for |
bugs in applications. For example, fuzzing is t
part of the overall quality checking process emple
Adobe [28], Microsoft [14], and Google [27], as

USENIX Association

Seed Selection for Successful Fuzzing

Adrian Herrera Hendra Gunadi Shane Magrath
ANU & DST ANU DST
Australia Australia Australia
Michael Norrish Mathias Payer Antony L. Hosking
CSIRO’s Data61 & ANU EPFL ANU & CSIRO’s Data61
Australia Switzerland Australia

ABSTRACT

Mutation-based greybox fuzzing—unquestionably the most widely-
used fuzzing technique—relics on a set of non-crashing seed inputs
(a corpus) to bootstrap the bug-finding process. When evaluating a
fuzzer, common approaches for constructing this corpus include:

() using an empty file; (i) using a single sced representative of the
target’s input format; or (ii) collecting a large number of seeds (e,
by crawling the Internet). Little thought is given to how this seed
choice affects the fuzzing process, and there s no consensus on
which approach is best (or even if a best approach exists).

To address this gap in knowledge, we systematically investigate
and evaluate how seed selection affects a fuzzer's ability to find bugs
in real-world software. This includes a systematic review of sced
selection practices used in both evaluation and deployment con-
texts, and a large-scale empirical evaluation (over 33 CPU-years) of
six seed selection approaches. These six sced sclection approaches
include three corpus minimization techniques (which sclect the
smallest subset of seeds that trigger the same range of instrumen-
tation data points as a full corpus).

Our results demonstrate that fuzzing outcomes vary significantly
depending on the initial seeds sed to bootstrap the fuzzer, with min-
imized corpora outperforming singleton, empty, and large (in the
order of thousands of files) seed sets. Consequently, we encourage
seed selection to be foremost in mind when evaluating/deploying
fuzzers, and recommend that (a) seed choice be carefully considered
and explicitly documented, and (b) never to evaluate fuzzers with
only a single seed.

CCS CONCEPTS

- Software and its engineering — Software testing and de-
bugging; - Security and privacy — Software and application
security.

KEYWORDS

fuzzing, corpus minimization, software testing
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1 INTRODUCTION

Fuzzing is a dynamic analysis technique for finding bugs and vul-
nerabilities in software, triggering crashes in a target program by
subjecting it to a large number of (possibly malformed) inputs.
Mutation-based fuzzing typically uses an initial set of valid seed
inputs from which to generate new seeds by random mutation. Due
[t plicity and case-of-use, based

such as AFL [74], honggfuzz [64], and libFuzzer [61] are widely
deployed, and have been highly successful in uncovering thousands
of bugs across a large number of popular programs [, 16]. This
suceess has prompted much rescarch into improving various as-
pects of the fuzzing process, including mutation strategies [39, 42],
energy assignment policies [15, 25, and path exploration algo-
rithms [14, 73]. However, while researchers often note the impor-
tance of high-quality input seeds and their impact on fuzzer perfor-
mance 37, 56, 58, 67), few studies address the problem of optimal de-
sign and construction of corpora for mutation-based fuzzers [56, 58],
and none assess the precise impact of these corpora in coverage-
guided mutation-based greybox fuzzing.

Intuitively, the collection of seeds that form the initial corpus
should generate a broad range of observable behaviors in the target.
Similarly, candidate seeds that are behaviorally similar to one an-
other should be represented in the corpus by a single seed. Finally,
both the total size of the corpus and the size of individual seeds
should be minimized. This is because previous work has demon-

fuzzing, In particular, Xu et al. [71] showed that the overhead from
opening/closing test-cases and synchronization between workers
each introduced a 2x overhead. Time spent opening/closing test-
cases and synchronization is time diverted from mutating inputs
and expanding code coverage. Minimizing the total corpus size and.
the size of individual test-cases reduces this wastage and enables
time to be (better) spent on finding bugs.

Under these assumptions, simply gathering as many input files
as possible is not a reasonable approach for constructing a fuzzing
corpus. Conversely, these assumptions also suggest that beginning
with the “empty corpus” (e.g. consisting of one zero-length file)
‘may be less than ideal. And yet, as we survey here, the majority
of published research uses cither (a) the *singleton corpus” (eg. a
single seed representative of the target program’s input format),

e Empty = easy to compare fuzzers
o Only good for finding shallow bugs

e Too large corpus = slow fuzzer

e Sweet spot: Use a corpus minimizer
o Doesn’t matter which one
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Greybox fuzzing

Select input

e Rather than generating random
data, mutate existing data

How long do we focus on a seed?

How do we select this seed?




Power scheduling

e Power schedule = amount of

energy assigned to an input

o Decrease energy each execution
o When energy = 0, change inputs

e Examples

Markov chain
Multi-arm bandit
Machine learning
Heuristics

o O O O

Coverage-Based Greybox Fuzzing

as Markov Chain

, and Abhik Roychoudhury

Marcel Béhme

Abstract—Coverage-based Greybox Fuzzing (CC
generated by siightly mutating a seed input. If the {
is discarded. We observe that most tests exercise
more paths with the same number of tests by grav.
‘CGF using a Markov chain model which specifies
exercises path j. Each state (.., seed) has an en
that CGF is considerably more efficient if energy is
monotonically every time that seed is chosen. Ene
‘extending AFL. In 24 hours, AFLFast exposes 3 pi
unreported CVES 7x faster than AFL. AFLFast pro
AFLFast to the symbolic executor Klee. In terms o
‘same subject programs that were discussed in the
Klee while a combination of both tools achieves be

Index Terms—Vuinerabilty detection, fuzzing, pa

1 INTRODUCTION

ECENTLY, there has been a controversial ¢
the efficiency of symbolic execution-bas:
fuzzers versus more lightweight greybox fuz
Symbolic execution is a systematic effort to st
behaviors and thus considerably more effectiv
most vulnerabilities were exposed by partic
‘weight fuzzers that do not leverage any prograr
It turns out that even the most effective tect
efficient than blackbox fuzzing if the time sper
a test case takes too long [4]. Symbolic exect
effective because each new test exercises a diff
the program. However, this effectiveness com«
of spending sigrificant time doing program anal
straint soloing. Blackbox fuzzing, on the othe
not require any program analysis and gene
orders of magnitude more tests in the same tim
Coverage-based Greybox Fuzzing (CGP) is ¢
make fuzzing more effective at path explor:
sacrificing time for program analysis. CGF use:
(binary) instrumentation to determine a uniq
for the path that is exercised by an input. New
erated by slightly mutating the provided seec
also call the new tests as fuzz). If some fuzz exc

o The authors are with the Department of Computer Sc
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EcoFuzz is examined against
14 real-world subjects over 49
results, EcoFuzz could attain
AFL with reducing 32% test c:
Besides, EcoFuzz identified 17
tils and other software. We a
some IoT devices and found a t
component.

1 Introduction

Fuzzing is an automated softw
ular and effective for detectin
which was first devised by B:
Since then, fuzzing has been d
of the most effective techniqu
Fuzzing (CGF) has attracted s

il apolves ik o siinns ) whish s U st proci
ing seed to fuzz next (seed prioritization), and 2) how many efforts
should be made to the current seed (power scheduling). In this
paper, we present our fuzzer, CEREnRo, to address the above chal-
lenges. For the seed prioritization problem, we propose an online
multi-objective based algorithm to balance various metrics such
as code complexity, coverage, execution time, ete. To address the
power scheduling problem, we introduce the concept of input po-
tential to measure the complexity of uncovered code and propose a
cost-effective algorithm to update it dynamically. Unlike previous
approaches where the fuzzer evaluates an input solely based on
the execution traces that it has covered, CEREBRO is able to fore-
see the benefits of fuzzing the input by adaptively cvaluating its
input potential. We perform a thorough evaluation for CeRenRo
on 8 different real-world progr:

‘Yuekang Li, Yinxing Xue, Hongxu Chen, Xiuheng Wu, Cen Zhang, Xiaofei
Xie, Haijun Wang, and Yang Liu. 2019. CResRo: Context-Aware Adaptive
Fuzzing for Effective Vulnerability Detection. In Proceedings of the 27th
ACM Joint European Software Engincering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE "19), August 26-30, 2019,
Tallinn, Estonia. ACM, New York, NY, USA, 12 pages. htips://doi.org/10.
1145/3338906.3338975

1 INTRODUCTION

Fuzzing, or fuzz testing, is progressively gaining popularity in both
industry and academia since proposed decades before [1]. Various
fuzzing tools (fuzzers) have been springing up to fulfill different
testing scenarios in recent years [2]. These fuzzers can be classified
as blackbox, whitebox, and greybox based on the awareness of
the structural information about the program under test (PUT).

CereBRo can find more vulneral
than state-of-the-art fuzzers such as AFL and AFLFast

CCS CONCEPTS

« Security and privacy — Vulnerability scanners.

C ding auth

. The show that 3] have no the internals of PUT.
ies and achieve btter coverage  So they can scale up but may ot be effecive. On the contrary,
is techniques

(e.g. symbolic execution tree [4]) to improve effectiveness at the
cost of scalability. To have the best of both worlds, greybox fuzzers
(GBFs), such as AFL (5], are advocated to achieve scalability yet
effectiveness. Fig. 1 depicts the workflow of greybox fuzzing.

lysis. For example, Vuzzer [6],

vtag Aokt A recent trend in academia is to make greybox fuzzing whiter
» personl or
d Steurk (7], and ANcowa [5] mainly help GBFs to penetrate path
Sy by others than ACM constraints via modifications on the seed mutator and feedback col-
ih,

Fig. 1. However, based on the nature that fuzzing’s
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ng the seeds’

i this paper, we denote althe fls fed o the PUT by fuzers s inputs,and only
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e Mutate enough to explore
“interesting” states

e Don’t mutate too much, or we'll just E-

error out

Where and how do we mutate?



Mutations

Structure agnostic

e Bit flip, byte/word/... substitution, repetition, splice

Structure aware

e Keyword substitution, grammar-based
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e Explore “deeper” code
e Require a priori knowledge
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Structure agnostic

Bit flip, byte/word/... substitution, repetition, splice
Fast

Simple to implement

Destroys structure

Structure aware

e Keyword substitution, grammar-based
e Explore “deeper” code
e Require a priori knowledge



Grammar-based fuzzing

e Many targets (e.g., JavaScript
iInterpreter) accept input described by

a context-free grammar (CFG)

o Highly structured
o Blind mutation will destroy structure

e Leverage CFG in mutation
o “Lift” input to parse tree
o Mutate parse tree(s
o Lower parse tree back to file
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NAUTILUS:
Fishing for Deep Bugs with Grammars

Gramatron: Effective Grammar-Aware Fuzzing

Prashast Srivas
Purdue Univers
United States of A1

ABSTRACT
Fuzzers aware of the input grammar can e
states using grammar-aware mutations. E:
fuzzers are ineffective at synthesizing com
(i) grammars introducing a sampling bias ¢
due to their structure, and (i) the current
parse trees performing localized small-scal
Gramatron uses grammar automatons
gressive mutation operators to synthesize
faster. We build grammar automatons to ad
Itrestructures the grammar to allow for unb
input state space. We redesign grammar-av
to be more aggressive, i, perform large-s
Gramatron can consistently generate ¢
an efficient manner as compared to using «
with parse trees. Inputs generated from scr:
higher diversity as they achieve up to 24.2%
to existing fuzzers. Gramatron makes inpu
and the input representations are 24% small
tion operators are 6.4X more aggressive wh
at performing these mutations. We evaluate
interpreters with 10 known bugs consistin
v b

GRIMOIRE: Synthesizing Structure while Fuzzing

Tim Blazytko, Cornelius Aschermann, Moritz Schlégel, Ali Abbasi,
Sergej Schumilo, Simon Wérner and Thorsten Holz

Ruhr-Universitiit Bochum, Germany

Abstract

In the past few years, fuzzing has received significant at-
tention from the research community. However, most of this
attention was directed towards programs without a dedicated
parsing stage. In such cases, fuzzers which leverage the input
structure of a program can achieve a significantly higher code
coverage compared to traditional fuzzing approaches. This
advancement in coverage is achieved by applying large-scale
‘mutations in the application’s input space. However, this
improvement comes at the cost of requiring expert domain
Kknowledge, as these fuzzers depend on structure input speci-
fications (e. g., grammars). Grammar inference, a technique

Gramatron finds all the complex bug trigger
the simple bug triggers, Gramatron outper
of seven times. To demonstrate Gramatro
wild, we deployed Gramatron on three po
10-day fuzzing campaign where it discovere

CCS CONCEPTS

- Software and its engineering — Sof
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which can generate such grammars for a given
program, can be used to address this shortcoming. Such tech-
niques usually infer a program’s grammar in a pre-processing
step and can miss important structures that are uncovered only
later during normal fuzzing.

In this paper, we present the design and implementation
of GRIMOIRE, a fully automated coverage-guided fuzzer
which works without any form of human interaction or pre-
configuration; yet, it is still able to efficiently test programs
that expect highly structured inputs. We achieve this by per-
forming large-scale mutations in the program input space
using grammar-like combinations to synthesize new highly
structured inputs without any pre-processing step. Our eval-
uation shows that GRIMOIRE outperforms other coverage-
guided fuzzers when fuzzing programs with highly structured

sium on Software Testing and Analysis (ISSTA 21
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3460319.3464814
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nputs. it improves upon existing grammar-
based coverage-guided fuzzers. Using GRIMOIRE, we iden-
tified 19 distinct memory corruption bugs in real-world pro-
‘grams and obtained 11 new CVEs.

1 Introduction

As the amount of software impacting the (digital) life of
nearly every citizen grows, effective and efficient testing
isms for software become i important. The

software has spawned a large body of research on effective
feedback-based fuzzing. AFL and its derivatives have largely
conquered automated, dynamic software testing and are used
to uncover new security issues and bugs every day. However,
while great progress has been achieved in the field of fuzzing,
many hard cases still require manual user interaction to gen-
erate satisfying test coverage. To make fuzzing available to
‘more programmers and thus scale it to more and more target
programs, the amount of expert knowledge that is required to
effectively fuzz should be reduced to a minimum. Therefore,
itis an important goal for fuzzing research to develop fuzzing
techniques that require less user interaction and, in particular,
less domain knowledge to enable more automated software
testing.

Structured Input Languages. One common challenge for
current fuzzing techniques are programs which process highly
structured input languages such as interpreters, compilers,
text-based network protocols or markup languages. Typically,
such inputs are consumed by the program in two stages: pars-
ing and semantic analysis. If parsing of the input fails, deeper
parts of the target program—containing the actual applica-
tion logic—fail to execute; hence, bugs hidden “deep” in the
code cannot be reached. Even advanced feedback fuzzers—
such as AFL—are typically unable to produce diverse sets
of syntactically valid inputs. This leads to an imbalance, as
these programs are part of the most relevant attack surface in
practice, yet are currently unable to be fuzzed effectively. A
prominent example are browsers, as they parse a multitude
of highly-structured inputs, ranging from XML or CSS to
JavaScript and SQL queries.

Previous approaches to address this problem are typi-
cally based on manually provided grammars or seed cor-
pora [2, 14,45, 52]. On the downside, such methods require.
human experts to (often manually) specify the grammar or
suitable seed corpora, which becomes next to impossible for

publication of the fuzzing framework AFL [65] and its suc-
cess at uncovering a huge number of bugs in highly relevant

with or proprietary input specifi-
cations. An orthogonal line of work tries to utilize advanced
program analysis techniques to automatically infer grammars
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Grammar-based fuzzing

Pros

e Reach “deeper” code
e Can be used without coverage

Cons

e Require a priori knowledge of input format



Grammar-based fuzzing

Pros

e Reach “deeper” code
e Can be used without coverage

Cons

e Require a priori knowledge of input format

Some fuzzers try to “learn” this input format



Greybox fuzzing

Execute target

e Measure fuzzer “progress”

e Progress = code coverage




Coverage map
e Edge coverage is standard
o Whatif # edges > sizeof (cov map)?

o Must approximate
o AFL uses a (lossy) hash function

e \What if source is not available?
o Use binary instrumentation (e.g., Intel PIN, DynamoRIO)



Coverage map

Edge coverage is a (relatively) poor
approximation of a program’s state
space

Alternatives:

e Context-sensitive edge
e Path
e Data flow
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Abstract—Coverage-guided greybox fuzzers rely on feedback
derived from control-flow coverage o explore a target progr
and uncover bugs. This is despite control-flow feedback offering
only a coarse-grained approximation of program behavior. Data
{iow ntuitively more-sccurately characterioes program behuior:
espite. this , fuzzers driven by data-flow coverage
bave reseived cumpanuvely little attention, appearing mainly
‘when heavyweight program analyses (€.g., taint analysis, symbolic
execution) are used. Unfortunately, these more accurate analyses
incur a high run-time penalty, impeding fuzzer throughput.
Lightweight data-flow alternatives to control-flow fuzzing remain

g

We present DATAFLOW, a greybox fuzzer driven by
Jightweight data-flow profling. Whereas control low e rep.
resent the order of operations in a program, data-flow edges
capture the dependencies between operations that produce data
values and the operations that consume them: indeed, there may
be no control dependence between those operations. As such,
data-flow coverage captures behaviors not visible as control flow
and intuitively discovers more or different bugs. Moreover, we
establish a framework for reasoning about data-flow coverage,
alowing the cunpuistienal cot of exploration 1 be balanced
with precisic

We perform a preliminary evaluation of DATAFLOW, com-
paring fuzzers driven by control flow, taint analysis (both ap-
proximate and exact), and data flow. Our initial results suggest

so far, pure coverage remains the best coverage metric
for uncovering bugs in most targets we fuzzed (72 % of them).
However, data-flow coverage does show promise in targets where
control flow is decoupled from semantics (e.g., parsers). Further
evaluation and analysis on a wider range of targets is required.

L. INTRODUCTION

Fuzzers are an indispensable tool in the software-testing
toolbox. The idea of fuzzing—to test a target program by
subjecting it to a large number of randomly-generated inputs—
can be traced back to an assignment in a graduate Advanced
Operating Systems class [1]. These fuzzers were relatively
primitive (compared to a modern fuzzer): they simply fed a
randomly-generated input to the target, failing the test if the
target crashed or hung. They did not model program or input
structure, and could only observe the input/output behavior
of the target. In contrast, modern fuzzers use sophisticated
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program analyses to model program and input structure, and
continuously gather dynamic information about the target.

Leveraging dynamic information drives fuzzer efficiency.
For example, coverage-guided greybox fuzzers—pethaps the
most widely-used class of fuzzer—track code paths executed
by the target.! This allows the fuzzer to focus its mutations on
Inputs eaching ew code oy, 2 fuzzer cannot find bugs

code never executed, so maximizing the amount of code
crecuted should maximize the number of bugs found. Code
coverage serves as an approximation of program behavior, and
expanding code coverage implies exploring program behaviors.

Coverage-guided greybox fuzzers are now pervasive. Their
success [2] can be attributed to one fuzzer in particular:
American Fuzzy Lop (AFL) [3]. AFL is a greybox fuzzer that
uses lightweight instrumentation to track edges covered in the
target’s control-flow graph (CFG). A large body of research has
built on AFL [4-12]. While improvements have been made,
most fuzzers still default to edge coverage as an approximation
of program behavior. Is this the best we can do?

In some targets, control flow offers only a coarse-grained
approximation of program behavior. This includes targets
whose control structure is decoupled from its semantics
(e.g., LR parsers generated by yacc) [13]. Such targets require
data-flow coverage [13-17]. Whereas control flow focuses on
the order of operations in a program (i.c., branch and loop
structures), data flow instead focuses on how variables (ie.,
data) are defined and used [14]: indeed, there may be no
control dependence between variable definition and use sites
(see §III for details).

In fuzzing, data flow typically takes the form of dynamic
taint analysis (DTA). Here, the target’s input data is tainted
at its definition site and tracked as it is accessed and used at
runtime. Unfortunately, accurate DTA is difficult to achieve
and expensive to compute (e.g., prior work has found DTA
is expensive [18, 19] and its accuracy highly variable across
implementations [18, 20]). Moreover, several real-world pro-
grams fail to compile under DTA, increasing deployability
concerns. Thus, most widely-deployed greybox fuzzers (e.g.,
AFL (3], libFuzzer [21], and honggfuzz [22]) eschew DTA in
favor of higher fuzzing throughput.

While lightweight alternatives to DTA exist (e.g.,
REDQUEEN (23], GREYONE [19]), the full potential of
control- vs. data-flow based fuzzer coverage metrics have not
yet been thoroughly explored. To support this exploration, we

"Miller et al’s original fuzzer (1] is now known as a blackbox fuzzer,
because it has no knowledge of the targe’s internals



Coverage map

Edge coverage is a (relatively) poor
approximation of a program’s state
space

Alternatives:

e Context-sensitive edge
e Path
e Data flow

Accuracy vs performance

Fuzzing with Data Dependency Information

Alessandro Mantovani
EURECOM
mantovan@eurecom.fr

Abstract—Recent advances in fuzz testing
several forms of feedback mechanisms,
fact that for a large range of programs ar
coverage alone is insufficient to reveal com
spired by this line of research, we examined
representations looking for a match betwe
of the structure and adaptability to the
testing. In particular, we believe that data d
(DDGs) represent a good candidate for this
information embedded by this data struci
useful to find vulnerable constructs by s
tions of def-use pairs that would be difficul
fuzzer to trigger. Since some portions ol
graph overlap with the control flow of t
possible to reduce the additional instrum
only “interesting” data-flow dependencies
the fuzzer to visit the code in a distinct
standard methodologies.

To test these observations, in this p
DDFuzz, a new approach that rewards tk
with code coverage information, but also
in the data dependency graph are hit. |
that the adoption of data dependency it
coverage-guided fuzzing is a promising solu
to discover bugs that would otherwise rem:
standard coverage approaches. This is der
72 different vulnerabilities that our data-d
approach can identify when executed on 3
from three different datasets.

1. Introduction

In a society that makes software app
tral core of many every-day activities is «
such software as secure as possible bef
to the public. This has led to a large an
focused on the development of increasin
techniques to discover vulnerabilities, su
ware testing [36], [60], 77), symbolic
[62], [71] and dynamic analysis [73].
In the context of dynamic analysis,
proposed many approaches to measure th
certain input produces in the software w
of the possible metrics is path coverage
all independent paths present in a progre
in software testing, the community has
coverage for tests generation [64], [7(
of automatically producing inputs that «
code locations. The main limitation of

Be Sensitive and Collaborative:
Analyzing Impact of Coverage Metrics in Greybox Fuzzing

Jinghan Wang', Yue Duan*, Wei Song, Heng Yin', and Chengyu Song®

Coverage-guided g
most common techniq
metric, which decide:
essential parameter of
results. While there a1
ness of different cove
is known about how
ally affect the fuzzing
it is unclear whether
is superior to all the
the first systematic s
age metrics in fuzzin
discuss the concept 0!
retically compare diffi
several coverage met
study on these metris
LAVA-M dataset, and
of 221 binaries). We |
has limited resources
metric has its unique
of branches (thus vul
grand slam coverage
also explore combini
cross-seeding, and th
fuzzing based approa
of binaries in the CGC
that combines fuzzin
time, our approach us

1 Introduction

Greybox fuzzing is a
nique that has been w
panies such as Googl
tups (e.g., Trail of B:
Challenge (CGC), gr
to be more effective «
symbolic execution ai

USENIX Association

fUC Riverside

#Cornell University
{jwang131,wsong008 } @ucr.edu, {heng,csong} @cs.ucr.edu

#yd375@cornell.edu

Registered Report: DATAFLow

Towards a Data-Flow-Guided Fuzzer

Adrian Herrera Mathias Payer Antony L. Hosking
ANU & DST EPFL ANU
drian, edu.au ‘mathi; net i du.au

Abstract—Coverage-guided greybox fuzzers rely on feedback
derived from control-flow coverage o explore a target progr
and uncover bugs. This is despite control-flow feedback offering
only a coarse-grained approximation of program behavior. Data
{iow ntuitively more-sccurately characterioes program behuior:
espite. this , fuzzers driven by data-flow coverage
bave reseived cumpanuvely little attention, appearing mainly
‘when heavyweight program analyses (€.g., taint analysis, symbolic
execution) are used. Unfortunately, these more accurate analyses
incur a high run-time penalty, impeding fuzzer throughput.
Lightweight data-flow alternatives to control-flow fuzzing remain

g

We present DATAFLOW, a greybox fuzzer driven by
Jightweight data-flow profling. Whereas control low e rep.
resent the order of operations in a program, data-flow edges
capture the dependencies between operations that produce data
values and the operations that consume them: indeed, there may
be no control dependence between those operations. As such,
data-flow coverage captures behaviors not visible as control flow
and intuitively discovers more or different bugs. Moreover, we
establish a framework for reasoning about data-flow coverage,
alowing the cunpuistienal cot of exploration 1 be balanced
with precisic

We perform a preliminary evaluation of DATAFLOW, com-
paring fuzzers driven by control flow, taint analysis (both ap-
proximate and exact), and data flow. Our initial results suggest

so far, pure coverage remains the best coverage metric
for uncovering bugs in most targets we fuzzed (72 % of them).
However, data-flow coverage does show promise in targets where
control flow is decoupled from semantics (e.g., parsers). Further
evaluation and analysis on a wider range of targets is required.

L. INTRODUCTION

Fuzzers are an indispensable tool in the software-testing
toolbox. The idea of fuzzing—to test a target program by
subjecting it to a large number of randomly-generated inputs—
can be traced back to an assignment in a graduate Advanced
Operating Systems class [1]. These fuzzers were relatively
primitive (compared to a modern fuzzer): they simply fed a
randomly-generated input to the target, failing the test if the
target crashed or hung. They did not model program or input
structure, and could only observe the input/output behavior
of the target. In contrast, modern fuzzers use sophisticated
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program analyses to model program and input structure, and
continuously gather dynamic information about the target.

Leveraging dynamic information drives fuzzer efficiency.
For example, coverage-guided greybox fuzzers—pethaps the
most widely-used class of fuzzer—track code paths executed
by the target.! This allows the fuzzer to focus its mutations on
Inputs eaching ew code oy, 2 fuzzer cannot find bugs

code never executed, so maximizing the amount of code
crecuted should maximize the number of bugs found. Code
coverage serves as an approximation of program behavior, and
expanding code coverage implies exploring program behaviors.

Coverage-guided greybox fuzzers are now pervasive. Their
success [2] can be attributed to one fuzzer in particular:
American Fuzzy Lop (AFL) [3]. AFL is a greybox fuzzer that
uses lightweight instrumentation to track edges covered in the
target’s control-flow graph (CFG). A large body of research has
built on AFL [4-12]. While improvements have been made,
most fuzzers still default to edge coverage as an approximation
of program behavior. Is this the best we can do?

In some targets, control flow offers only a coarse-grained
approximation of program behavior. This includes targets
whose control structure is decoupled from its semantics
(e.g., LR parsers generated by yacc) [13]. Such targets require
data-flow coverage [13-17]. Whereas control flow focuses on
the order of operations in a program (i.c., branch and loop
structures), data flow instead focuses on how variables (ie.,
data) are defined and used [14]: indeed, there may be no
control dependence between variable definition and use sites
(see §III for details).

In fuzzing, data flow typically takes the form of dynamic
taint analysis (DTA). Here, the target’s input data is tainted
at its definition site and tracked as it is accessed and used at
runtime. Unfortunately, accurate DTA is difficult to achieve
and expensive to compute (e.g., prior work has found DTA
is expensive [18, 19] and its accuracy highly variable across
implementations [18, 20]). Moreover, several real-world pro-
grams fail to compile under DTA, increasing deployability
concerns. Thus, most widely-deployed greybox fuzzers (e.g.,
AFL (3], libFuzzer [21], and honggfuzz [22]) eschew DTA in
favor of higher fuzzing throughput.

While lightweight alternatives to DTA exist (e.g.,
REDQUEEN (23], GREYONE [19]), the full potential of
control- vs. data-flow based fuzzer coverage metrics have not
yet been thoroughly explored. To support this exploration, we

"Miller et al’s original fuzzer (1] is now known as a blackbox fuzzer,
because it has no knowledge of the target’s intemals
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Greybox fuzzing

Does it crash?

e Classic memory-safety violation
o SIGSEGV

What about other bug types?
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ABSTRACT

Type confusion, often combined with use-after-free, is the main
attack vector to compromise modern C++ software like browsers
or virtual machines.

Typecasting is a core principle that enables modularity in C++.
For performance, most typecasts are only checked statically, i
the check only tests if a cast is allowed for the given type hierarchy,
ignoring the actual runtime type of the object. Using an object of
an incompatible base type instead of a derived type results in type
confusion. Attackers abuse such type confusion issues to attack
popular software products including Adobe Flash, PHP, Google
Chrome, or Firefox.

We propose to make all type checks explicit, replacing static
cks with full runtime type checks. To minimize the performance
impact of our mechanism HexType, we develop both low-overhead

ata structures and compiler optimizations. To maximize detection
coverage, we handle specific object allocation patterns, e.g, place-
ment new or reinterpret_cast which are not handled by other
mechanisms.

Our prototype results show that, compared to prior work, Hex-
Type has at least 1.1 - 6.1 times higher coverage on Firefox bench-
‘marks. For SPEC CPU2006 benchmarks with overhead, we show a 2
- 33.4 times reduction in overhead. In addition, HexType discovered
4 new type confusion bugs in Qt and Apache Xerces-Ci-+.

CCS CONCEPTS

+ Security and privacy — Systems security; Software and ap-
plication security;

KEYWORDS

Type confusion; Bad casting; Type safety; Typecasting; Static_cast;
Dynamic._cast; Reinterpret_cast

1 INTRODUCTION
Ce i well suited for large software projects as it combines high
level modularity and abstraction with low level memory access and

performance. Common examples of C++ software include Google
Chrome, MySQL, the Oracle Java Virtual Machine, and Firefox, all
of which form the basis of daily computing uses for end-users.

‘The runtime performance efficiency and backwards compatibil-
ity to C come at the price of safety: enforcing memory and type
safety is left to the programmer. This lack of safety leads to type
confusion vulnerabilities that can be abused to attack programs,
allowing the attacker to gain full privileges of these programs. Type
confusion vulnerabilities are a challenging mixture between lack
of type and memory safety.

Generally, type confusion vulnerabilities are, as the name im-
plies, vulnerabilities that occur when one data type is mistaken for
another due to unsafe typecasting, leading to a reinterpretation of
the underlying type representation in semantically mismatching
contexts.

For instance, a program may cast an instance of a parent class
to a descendant class, even though this is neither safe nor allowed
at the programming language level if the parent class lacks some
of the fields or virtual functions of the descendant class. When the
program subsequently uses the fields or functions, it may use data,
say, as a regular field in one context and as a virtual function table
(viable) pointer in another. Such type confusion vulnerabilities are
not only wide-spread (e.g., many are found in a wide range of soft-
ware products, such as Google Chrome (CVE-2017-5023), Adobe
Flash (CVE-2017-2095), Webkit (CVE-2017-2415), Microsoft Internet
Explorer (CVE-2015-6184) and PHP (CVE-2016-3185)), but also se-
curity critical (e.g., many are demonstrated to be casily exploitable
due to deterministic runtime behaviors).

Previous research efforts tried to address the problem through
runtime checks fm static casts. Exlsnng ‘mechanisms can be catego-

isting fields emb:dded in the objects (such as visble pointers) [6, 14,
29,38]; and (i) ms that 21].
First, solutions that rely on the existing object format have the
advantage of avoiding expensive runtime object tracking to main-
tain disjoint metadata. Unfortunately, these solutions only support
polymorphic objects which have a specific form at runtime that

the binary at prohibitively high runt
for AFL fuzzing in QEMU mode
use unsound static rewriting based
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allows object their vtable pointer. As most
software mixes both polymorphlc and non-polymorphic objects,
these solutions are limited in practice — either developers must
manually blacklist unsupported classes or programs end up having
unexpected crashes at runtime. Therefore, recent state-of-the-art
detectors leverage disjoint metadata for type information. Upon
object allocation, the runtime system records the true type of the
object in a disjoint metadata table. This approach indeed does not
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ABSTRACT

Type confusion, often combined with use-after-free, is the main
attack vector to compromise modern C++ software like browsers
or virtual machines.

Typecasting is a core principle that enables modularity in C++.
For performance, most typecasts are only checked statically, i.e,
the check only tests if a cast is allowed for the given type hierarchy,
ignoring the actual runtime type of the object. Using an object of
an incompatible base type instead of a derived type results in type
confusion. Attackers abuse such type confusion issues to attack
popular software products including Adobe Flash, PHP, Google
Chrome, or Firefox.

We propose to make all type checks explicit, replacing static
cks with full runtime type checks. To minimize the performance
impact of our mechanism HexType, we develop both low-overhead

ata structures and compiler optimizations. To maximize detection
coverage, we handle specific object allocation patterns, e.g, place-
ment new or reinterpret_cast which are not handled by other
mechanisms.

Our prototype results show that, compared to prior work, Hex-
Type has at least 1.1 - 6.1 times higher coverage on Firefox bench-
‘marks. For SPEC CPU2006 benchmarks with overhead, we show a 2
- 33.4 times reduction in overhead. In addition, HexType discovered
4 new type confusion bugs in Qt and Apache Xerces-Ci-+.

CCS CONCEPTS

+ Security and privacy — Systems security; Software and ap-
plication security;

KEYWORDS

Type confusion; Bad casting; Type safety; Typecasting; Static_cast;
Dynamic._cast; Reinterpret_cast

1 INTRODUCTION
Ce i well suited for large software projects as it combines high
level modularity and abstraction with low level memory access and

performance. Common examples of C++ software include Google
Chrome, MySQL, the Oracle Java Virtual Machine, and Firefox, all
of which form the basis of daily computing uses for end-users.

‘The runtime performance efficiency and backwards compatibil-
ity to C come at the price of safety: enforcing memory and type
safety is left to the programmer. This lack of safety leads to type
confusion vulnerabilities that can be abused to attack programs,
allowing the attacker to gain full privileges of these programs. Type
confusion vulnerabilities are a challenging mixture between lack
of type and memory safety.

Generally, type confusion vulnerabilities are, as the name im-
plies, vulnerabilities that occur when one data type is mistaken for
another due to unsafe typecasting, leading to a reinterpretation of
the underlying type representation in semantically mismatching
contexts.

For instance, a program may cast an instance of a parent class
to a descendant class, even though this is neither safe nor allowed
at the programming language level if the parent class lacks some
of the fields or virtual functions of the descendant class. When the
program subsequently uses the fields or functions, it may use data,
say, as a regular field in one context and as a virtual function table
(viable) pointer in another. Such type confusion vulnerabilities are
not only wide-spread (e.g., many are found in a wide range of soft-
ware products, such as Google Chrome (CVE-2017-5023), Adobe
Flash (CVE-2017-2095), Webkit (CVE-2017-2415), Microsoft Internet
Explorer (CVE-2015-6184) and PHP (CVE-2016-3185)), but also se-
curity critical (e.g., many are demonstrated to be casily exploitable
due to deterministic runtime behaviors).

Previous research efforts tried to address the problem through
runtime checks for static casts. Exlsnng ‘mechanisms can be catego-

isting fields emb:dded in the objects (such as visble pointers) [6, 14,
29,38]; and (i) ms that 21].
First, solutions that rely on the existing object format have the
advantage of avoiding expensive runtime object tracking to main-
tain disjoint metadata. Unfortunately, these solutions only support
polymorphic objects which have a specific form at runtime that

the binary at prohibitively high runt
for AFL fuzzing in QEMU mode
use unsound static rewriting based
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allows object their vtable pointer. As most
software mixes both polymorphlc and non-polymorphic objects,
these solutions are limited in practice — either developers must
manually blacklist unsupported classes or programs end up having
unexpected crashes at runtime. Therefore, recent state-of-the-art
detectors leverage disjoint metadata for type information. Upon
object allocation, the runtime system records the true type of the
object in a disjoint metadata table. This approach indeed does not
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*nix file fuzzing

e Primary focus of academic research

e Assumes an “obvious” entry point
o AFL-style fuzzing: main + fread
o libFuzzer: dedicated LLVMFuzzerTestOneInput

e Commonly assumes source code

What is the entry point for a network service / OS kernel / loT
device? &)
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ABSTRACT

In recent years, fuzz testing has benefited from increased com-
putational power and important algorithmic advances, leading to
systems that any critical bugs and

in production software. Despite these successes, not all applications
can be fuzzed efficiently. In particular, stateful applications such as
network prots dby a low fuzzing
throughput and the need to develop complex fuzzing harnesses
that involve custom time delays and clean-up scripts.

In this paper, we present SnapFuzz, a novel fuzzing framework
for network applications. SnapFuzz offers a robust architecture
that transforms slow asynchronous network communication into
fast synchronous communication, snapshots the target at the latest
point at which it is safe to do so, speeds up file operations by
redirecting them to a custom in-memory filesystem, and removes
the need for many fragile modifications, such as configuring time
delays or writing clean-up scripts.

Using SnapFuzz, we fuzzed five popular networking applications:
LightFTP, TinyDTLS, Dnsmasq, LIVESSS and Demgrscp. We report
impressive performance speedups of 62.8x, 41.2x, 30.6 X, 24.6 X, and.
8.4, respectively, with significantly simpler fuzzing harnesses in
all cases. Due to its advantages, SnapFuzz has also found 12 extra
crashes compared to AFLNet in these applications.
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1 INTRODUCTION

Fuzzing is an effective technique for testing software systems, with
popular fuzzers such as AFL and LibFuzzer having found thousands
of bugs in both open-source and commercial software. For instance,
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Google has discovered over 25,000 bugs in their products and over
22,000 bugs in open-source code using greybox fuzzing [18].

Unfortunately, not all software can benefit from such fuzzing
campaigns. One important class of software, network protocol im-
plementations, is difficult to fuzz. There are two main difficulties:
the fact that in-depth testing of such applications needs to be aware
of the network protocol they implement (c.g., FTP, DICOM, SIP),
and the fact that they have side effects, such as writing data to the
fle system or exchanging messages over the network.

‘There are two main approaches for testing such software in a
‘meaningful way. One approach, adopted by Google's 0SS-Fuzz, is
to write unit-level test drivers that interact with the software via
its API [21]. While such an approach can be effective, it requires
significant manual effort, and does not perform system-level testing
where an actual server instance interacts with actual clients

A second approach, used by AFLNet [30], performs system-level
testing by starting actual server and client processes, and generat-
ing random message exchanges between them which nevertheless
follow the underlying network protocol. Furthermore, it does so
‘without needing a specification of the protocol, but rather by using
a corpus of real message exchanges between server and clients.
AFLNet's approach has significant advantages, requiring less man-
ual effort and performing end-to-end testing at the protocol level.

While AFLNet makes important advances in terms of fuzzing
network protocols, it has two main limitations. First, it requires
users to add or configure various time delays in order to make sure
the protocol is followed, and to write clean-up seripts to reset the
state across fuzzing iterations. Second, it has poor fuzzing perfor-
‘mance, caused by asynchronous network communication, various
time delays, and expensive file system operations, among others.

SnapFuzz addresses both of these challenges thorough a robust
architecture that transforms slow asynchronous network commu-
nication into fast synchronous communication, speeds up file oper-
ations and removes the need for clean-up scripts via an in-memory
filesystem, and improves other aspects such as delaying and au-
tomating the forkserver placement, correctly handling signal prop-
agation and climinating developer-added delays.

These i simplify the of
fuzzing harnesses for network applications and dramatically im-
prove fuzzing throughput in the range of 8.4x to 62.8x (mean:
30.6x) for a set of five popular server benchmarks.

2 FROM AFL TO AFLNET TO SNAPFUZZ

In this section, we first discuss how AFL and AFLNet work, focusing
on their internal architecture and performance implications, and
then provide an overview of SnapFuzz's architecture and main
contributions.
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ABSTRACT

In recent years, fuzz testing has benefited from increased com-
putational power and important algorithmic advances, leading to
systems that any critical bugs and

in production software. Despite these successes, not all applications
can be fuzzed efficiently. In particular, stateful applications such as
network protocol ined by a low fuzzing
throughput and the need to develop complex fuzzing harnesses
that involve custom time delays and clean-up scripts.

In this paper, we present SnapFuzz, a novel fuzzing framework
for network applications. SnapFuzz offers a robust architecture
that transforms slow asynchronous network communication into
fast synchronous communication, snapshots the target at the latest
point at which it is safe to do so, speeds up file operations by
redirecting them to a custom in-memory filesystem, and removes
the need for many fragile modifications, such as configuring time
delays or writing clean-up scripts.

Using SnapFuzz, we fuzzed five popular networking applications:
LightFTP, TinyDTLS, Dnsmasq, LIVESSS and Demgrscp. We report
impressive performance speedups of 62.8x, 41.2x, 30.6 X, 24.6 X, and.
8.4, respectively, with significantly simpler fuzzing harnesses in
all cases. Due to its advantages, SnapFuzz has also found 12 extra
crashes compared to AFLNet in these applications.
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1 INTRODUCTION

Fuzzing is an effective technique for testing software systems, with
popular fuzzers such as AFL and LibFuzzer having found thousands
of bugs in both open-source and commercial software. For instance,
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Google has discovered over 25,000 bugs in their products and over
22,000 bugs in open-source code using greybox fuzzing [18].

Unfortunately, not all software can benefit from such fuzzing
campaigns. One important class of software, network protocol im-
plementations, is difficult to fuzz. There are two main difficulties:
the fact that in-depth testing of such applications needs to be aware
of the network protocol they implement (c.g., FTP, DICOM, SIP),
and the fact that they have side effects, such as writing data to the
fle system or exchanging messages over the network.

‘There are two main approaches for testing such software in a
‘meaningful way. One approach, adopted by Google's 0SS-Fuzz, is
to write unit-level test drivers that interact with the software via
its API [21]. While such an approach can be effective, it requires
significant manual effort, and does not perform system-level testing
where an actual server instance interacts with actual clients

A second approach, used by AFLNet [30], performs system-level
testing by starting actual server and client processes, and generat-
ing random message exchanges between them which nevertheless
follow the underlying network protocol. Furthermore, it does so
‘without needing a specification of the protocol, but rather by using
a corpus of real message exchanges between server and clients.
AFLNet's approach has significant advantages, requiring less man-
ual effort and performing end-to-end testing at the protocol level.

While AFLNet makes important advances in terms of fuzzing
network protocols, it has two main limitations. First, it requires
users to add or configure various time delays in order to make sure
the protocol is followed, and to write clean-up seripts to reset the
state across fuzzing iterations. Second, it has poor fuzzing perfor-
‘mance, caused by asynchronous network communication, various
time delays, and expensive file system operations, among others.

SnapFuzz addresses both of these challenges thorough a robust
architecture that transforms slow asynchronous network commu-
nication into fast synchronous communication, speeds up file oper-
ations and removes the need for clean-up scripts via an in-memory
filesystem, and improves other aspects such as delaying and au-
tomating the forkserver placement, correctly handling signal prop-
agation and climinating developer-added delays.

These i simplify the of
fuzzing harnesses for network applications and dramatically im-
prove fuzzing throughput in the range of 8.4x to 62.8x (mean:
30.6x) for a set of five popular server benchmarks.

2 FROM AFL TO AFLNET TO SNAPFUZZ

In this section, we first discuss how AFL and AFLNet work, focusing
on their internal architecture and performance implications, and
then provide an overview of SnapFuzz's architecture and main
contributions.
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ABSTRACT

In recent years, fuzz testing has benefited from increased com-
putational power and important algorithmic advances, leading to
systems that critical bugs and

in production software. Despite these successes, not all applications
can be fuzzed efficiently. In particular, stateful applications such as
network protocol ined by a low fuzzing
throughput and the need to develop complex fuzzing harnesses
that involve custom time delays and clean-up scripts.

In this paper, we present SnapFuzz, a novel fuzzing framework
for network applications. SnapFuzz offers a robust architecture
that transforms slow asynchronous network communication into
fast synchronous communication, snapshots the target at the latest
point at which it is safe to do so, speeds up file operations by
redirecting them to a custom in-memory filesystem, and removes
the need for many fragile modifications, such as configuring time
delays or writing clean-up scripts.

Using SnapFuzz, we fuzzed five popular networking applications:
LightFTP, TinyDTLS, Dnsmasq, LIVESSS and Demgrscp. We report
impressive performance speedups of 62.8x, 41.2x, 30.6 X, 24.6 X, and.
8.4, respectively, with significantly simpler fuzzing harnesses in
all cases. Due to its advantages, SnapFuzz has also found 12 extra
crashes compared to AFLNet in these applications.

CCS CONCEPTS

+ Software and its engineering — Software testing and de-
bugging; - Security and privacy — Systems security.
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Fuzzing, network protocol implementations, stateful applications
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1 INTRODUCTION

Fuzzing is an effective technique for testing software systems, with
popular fuzzers such as AFL and LibFuzzer having found thousands
of bugs in both open-source and commercial software. For instance,
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Google has discovered over 25,000 bugs in their products and over
22,000 bugs in open-source code using greybox fuzzing [18].

Unfortunately, not all software can benefit from such fuzzing
campaigns. One important class of software, network protocol im-
plementations, is difficult to fuzz. There are two main difficulties:
the fact that in-depth testing of such applications needs to be aware
of the network protocol they implement (c.g., FTP, DICOM, SIP),
and the fact that they have side effects, such as writing data to the
fle system or exchanging messages over the network.

‘There are two main approaches for testing such software in a
‘meaningful way. One approach, adopted by Google's 0SS-Fuzz, is
to write unit-level test drivers that interact with the software via
its API [21]. While such an approach can be effective, it requires
significant manual effort, and does not perform system-level testing
where an actual server instance interacts with actual clients

A second approach, used by AFLNet [30], performs system-level
testing by starting actual server and client processes, and generat-
ing random message exchanges between them which nevertheless
follow the underlying network protocol. Furthermore, it does so
‘without needing a specification of the protocol, but rather by using
a corpus of real message exchanges between server and clients.
AFLNet's approach has significant advantages, requiring less man-
ual effort and performing end-to-end testing at the protocol level.

While AFLNet makes important advances in terms of fuzzing
network protocols, it has two main limitations. First, it requires
users to add or configure various time delays in order to make sure
the protocol is followed, and to write clean-up seripts to reset the
state across fuzzing iterations. Second, it has poor fuzzing perfor-
‘mance, caused by asynchronous network communication, various
time delays, and expensive file system operations, among others.

SnapFuzz addresses both of these challenges thorough a robust
architecture that transforms slow asynchronous network commu-
nication into fast synchronous communication, speeds up file oper-
ations and removes the need for clean-up scripts via an in-memory
filesystem, and improves other aspects such as delaying and au-
tomating the forkserver placement, correctly handling signal prop-
agation and climinating developer-added delays.

These i simplify the of
fuzzing harnesses for network applications and dramatically im-
prove fuzzing throughput in the range of 8.4x to 62.8x (mean:
30.6x) for a set of five popular server benchmarks.

2 FROM AFL TO AFLNET TO SNAPFUZZ

In this section, we first discuss how AFL and AFLNet work, focusing
on their internal architecture and performance implications, and
then provide an overview of SnapFuzz's architecture and main
contributions.
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T-Fuzz: fuzzing by program transformation
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Ab Fuzzing is a simple o discover fuzzing has become a standard in software development to

software bugs utilizing randomly generated mpms Hnwever, it
is limited by coverage and cannot find bugs hidden in deep
execution paths of the program because the randomly generated
inputs fail complex sanity checks, e.g., checks on magic values,
checksums, or hashes.

To improve coverage, existing approaches rely on imprecise
heuristics or complex input mutation techniques (e.g., symbolic
execution or taint analysis) to bypass sanity c Our novel

tackles coverage from a different angle: by removing
sanity checks in the target program. T-Fuzz leverages a coverage
ided fuzzer to generate inputs. Whenever the fuzzer can
no longer trigger new code paths, a light-weight, dynamic
fracing Fam (achnique detects the lrput el that th fcmer:
generated inputs fail. These checks are then removed from the
target program. Fuzzing then continues on the transformed
program, allowing the code protected by the removed checks
to be triggered and potential bugs discovered.

Fuzzing transformed programs to find bugs poses two chal-
lenges: (1) removal of checks leads to over-approximation and
false positives, and (2) even for true bup, |he mslnng input on
the transformed program may not tri bug in the original
program. As an auxiliary post-processing step, T-Fuzz leverages
& Symbolic execution-based approach to fier out falee posiives
and reproduce true bugs in the original program.

By transforming the program as well as mutating the input, T-
Fuzz covers mare code and fnds more true bugs than any existing
technique. We have evaluated T-Fuzz RPA Cyber
Gnm‘l Challenge dataset, LAVA-M St w00 4 reabvackh

ams (pngfix, tiffinfo, magick and pdftohtml). For
Ihe CGC dataset, T-Fuzz finds bugs in 166 binaries, Driller in
121, and AFL in 105. In addition, found 3 new bugs in previously-
fuzzed programs and libraries.

1. INTRODUCTION

Fuzzing is an automated software testing technique that
discovers faults by providing randomly-generated inputs o a
program. It has been proven to be simple, yet effective [1], [2].
With the reduction of computational costs, fuzzing has become
increasingly useful for both hackers and software vendors, who
use it to discover new bugs/vulnerabilities in software. As such,
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improve reliability and security (3], [4].

Fuzzers can be roughly divided into two categories based on
how inputs are produced: generational fuzzers and mutational
fuzzers. Generational fuzzers, such as PROTOS [5), SPIKE [6],
and PEACH (7], construct inputs according to some provided
format specification. By contrast, mutational fuzzers, including
AFL [8], honggfuzz [9], and zzuf [10], create inputs by ran-
domly mutating analyst-provided or randomly-generated seeds.
Generational fuzzing requires an input format specification,
which imposes significant manual effort to create (especially
when attempting to fuzz software on a large scale) or may
be infeasible if the format is not available. Thus, most recent
work in the field of fuzzing, including this paper, focuses on
mutational fuzzing.

Fuzzing is a dynamic technique. To find bugs, it must trigger
the code that contains these bugs. Unfortunately, mutational
fuzzing is limited by its coverage. Regardless of the muta-
tion strategy, whether it be a purely randomized mutation or
coverage-guided mutation, it is highly unlikely for the fuzzer
to generate inputs that can bypass complex sanity checks in
the target program. This is because, due to their simplicity,
mutational fuzzers are ignorant of the actual input format
expected by the program. This inherent limitation prevents
mutational fuzzers from triggering code paths protected by
sanity checks and finding “deep” bugs hidden in such code.

Fuzzers have adopted a number of approaches to better
mutate input to satisfy complex checks in a program. AFL (8],
considered the state-of-art mutational fuzzer, uses coverage
to guide its mutation algorithm, with great success in real
programs [11]. To help bypass the sanity checks on magic
values in the input files, AFL uses coverage feedback to heuris-
tically infer the values and positions of the magic values in the
input. Several recent approaches [12], [13], [14], [15] leverage
symbolic analysis or taint analysis to improve coverage by
generating inputs o bypass the sanity checks in the target
program. However, limitations persist — as we discuss in
our evaluation, state-of-the-art techniques such as AFL and
Driller find vulnerabilities in less than half of the programs
in a popular vulnerability analysis benchmarking dataset (the
challenge programs from the DARPA Cyber Grand Challenge).

Recent research into fuzzing techniques focuses on finding
new ways to generate and evaluate inputs. However, there
is no need to limit mutation to program inputs alone. In
fact, the program itself can be mutated to assist bug finding
in the fuzzing process. Following this intuition, we propose




Whitebox fuzzing

Symbolic execution

e Translate expressions into symbolic formulae
e Program paths accumulate formulae into constraints
e Constraints are solved (via a SAT / SMT solver)

Challenges

e Expensive / slow
e Modeling “external environment”



Concolic fuzzing

Concolic = concrete + symbolic

e Symbolic values augmented with concrete values
e Can always fall back to concrete values

Solutions

e Angora: Treat solver as optimization problem
e SymCC: Compiles concolic executor into the binary
e JIGSAW: JIT compile constraints ##



What about...

e Directed fuzzers?

e Determining when we’ve “fuzzed enough™?

e Benchmarking fuzzers?



What about...

e Directed fuzzers?

e Determining whel

e Benchmarking fu;




Conclusions

e F[uzzing research has progressed in leaps and bounds
o No longer just “file-based + *nix-based”

e Still many open problems

e Balance between performance and accuracy



What is fuzzing? Our first fuzzer
at is fuzzing?
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Grammar-based fuzzing

NAUTILUS:
Fishing for Deep Bugs with Grammars

Greybox fuzzing « &6 Many targets (e.g., JavaScript
e interpreter) accept input described by a
Does it find new coverage? . context-free grammar (CFG)
o Highly structured
e Save input 2 . Aot bt | e > Blind mutation will destroy structure

Leverage CFG in mutation
o “Lift" inputs to parse tree
o Mutate parse tree(s)
Lower parse tree back to file

e Return to start

SoK: Sanitizing

Sanitization
Conclusions

Allow for additional security policies to
be defined and checked at runtime X i
e Fuzzing research has progressed in leaps and bounds

o No longer just “file-based + *nix-based”
Typically compiler-based (e.g., LLVM),
but don’t have to be
e Still many open questions

What can we check for?

e Balance between performance and accuracy




