






Outline

1. What is fuzzing?

2. Shades of fuzzers
○ Black, grey, white

3. Fuzzing research state-of-the-art

4. Future directions



What is fuzzing?



What is fuzzing?



What is fuzzing?



What is fuzzing?

Pros

● No false positives
● Produces PoC
● Scalable



What is fuzzing?

Pros

● No false positives
● Produces PoC
● Scalable

Cons

● Incomplete
● Requires buildable target
● Scalability



Our first fuzzer



Our first fuzzer

How is this different to dynamic testing?



Our first fuzzer

Or regression testing?
How is this different to dynamic testing?



Our first fuzzer

Or regression testing?

Where does this come from?

How is this different to dynamic testing?



Our first fuzzer

Where does this come from?

Or regression testing?
How is this different to dynamic testing?



Our first fuzzer

A classic generational blackbox fuzzer



“An Empirical Study of the Reliability of Unix Utilities”

● Class project in 1988 
“Advanced Operating 
Systems” course @ 
University Wisconsin

● Later published in 1990



Blackbox fuzzing

Pros

● Simple

● Fast

● Embarrassingly parallel



Blackbox fuzzing

Pros

● Simple

● Fast

● Embarrassingly parallel



Blackbox fuzzing

Cons

● Generate mostly rubbish

● No notion of “progress”

● Only detect SIGSEGV



Can we do better?



Blackbox fuzzing

Cons

● Generate mostly rubbish

● No notion of “progress”

● Only detect SIGSEGV



Cons

● Generate mostly rubbish
○ Generate mutate

● No notion of “progress”

● Only detect SIGSEGV

Blackbox fuzzing



Cons

● Generate mostly rubbish
○ Generate mutate

● No notion of “progress”
○ Add a feedback loop

● Only detect SIGSEGV

Blackbox fuzzing



Cons

● Generate mostly rubbish
○ Generate mutate

● No notion of “progress”
○ Add a feedback loop

● Only detect SIGSEGV
○ Add a sanitizer

Blackbox fuzzing



Cons

● Generate mostly rubbish
○ Generate mutate

● No notion of “progress”
○ Add a feedback loop

● Only detect SIGSEGV
○ Add a sanitizer

Blackbox fuzzing



Cons

● Generate mostly rubbish
○ Generate mutate

● No notion of “progress”
○ Add a feedback loop

● Only detect SIGSEGV
○ Add a sanitizer

Blackbox fuzzing

Mutational coverage-guided fuzzer
aka

greybox fuzzer



Blackbox fuzzing



Greybox fuzzing



Greybox fuzzing



Greybox fuzzing

Select input

● Rather than generating random 
data, mutate existing data



Greybox fuzzing

Select input

● Rather than generating random 
data, mutate existing data

Where do these initial inputs come 
from?



Seed selection

● In academic evaluations: “empty seed” common

● In practice: large corpora



Seed selection

● In academic evaluations: “empty seed” common

● In practice: large corpora

Which is better?



Seed selection

● Empty = easy to compare fuzzers
○ Only good for finding shallow bugs

● Too large corpus = slow fuzzer

● Sweet spot: Use a corpus minimizer
○ Doesn’t matter which one



Greybox fuzzing

Select input

● Rather than generating random 
data, mutate existing data



Greybox fuzzing

Select input

● Rather than generating random 
data, mutate existing data

How long do we focus on a seed?

How do we select this seed?



Power scheduling

● Power schedule = amount of 
energy assigned to an input
○ Decrease energy each execution
○ When energy = 0, change inputs

● Examples
○ Markov chain
○ Multi-arm bandit
○ Machine learning
○ Heuristics



Greybox fuzzing

Mutate input

● Mutate enough to explore 
“interesting” states

● Don’t mutate too much, or we’ll just 
error out



Greybox fuzzing

Mutate input

● Mutate enough to explore 
“interesting” states

● Don’t mutate too much, or we’ll just 
error out

Where and how do we mutate?



Mutations

Structure agnostic

● Bit flip, byte/word/… substitution, repetition, splice

Structure aware

● Keyword substitution, grammar-based



Mutations

Structure agnostic

● Bit flip, byte/word/… substitution, repetition, splice
● Fast
● Simple to implement
● Destroys structure

Structure aware

● Keyword substitution, grammar-based
● Explore “deeper” code
● Require a priori knowledge



Mutations

Structure agnostic

● Bit flip, byte/word/… substitution, repetition, splice
● Fast
● Simple to implement
● Destroys structure

Structure aware

● Keyword substitution, grammar-based
● Explore “deeper” code
● Require a priori knowledge



● Many targets (e.g., JavaScript 
interpreter) accept input described by 
a context-free grammar (CFG)
○ Highly structured
○ Blind mutation will destroy structure

● Leverage CFG in mutation
○ “Lift” input to parse tree
○ Mutate parse tree(s)
○ Lower parse tree back to file

Grammar-based fuzzing



Grammar-based fuzzing

Pros

● Reach “deeper” code
● Can be used without coverage

Cons

● Require a priori knowledge of input format



Grammar-based fuzzing

Pros

● Reach “deeper” code
● Can be used without coverage

Cons

● Require a priori knowledge of input format

Some fuzzers try to “learn” this input format



Greybox fuzzing

Execute target

● Measure fuzzer “progress”

● Progress = code coverage



Coverage map

● Edge coverage is standard

● What if # edges > sizeof(cov_map)?
○ Must approximate
○ AFL uses a (lossy) hash function

● What if source is not available?
○ Use binary instrumentation (e.g., Intel PIN, DynamoRIO)



Coverage map

Edge coverage is a (relatively) poor 
approximation of a program’s state 
space

Alternatives:

● Context-sensitive edge
● Path
● Data flow



Coverage map

Edge coverage is a (relatively) poor 
approximation of a program’s state 
space

Alternatives:

● Context-sensitive edge
● Path
● Data flow

Accuracy vs performance



Greybox fuzzing

Does it crash?

● Classic memory-safety violation
○ SIGSEGV



Greybox fuzzing

Does it crash?

● Classic memory-safety violation
○ SIGSEGV

What about other bug types?



Sanitization

● Allow for additional security policies to 
be defined and checked at runtime

● Typically compiler-based (e.g., LLVM)
○ But don’t have to be



Sanitization

● Allow for additional security policies to 
be defined and checked at runtime

● Typically compiler-based (e.g., LLVM)
○ But don’t have to be

What can we check for?



Sanitization

Anything we can encode as an invariant

● Address Sanitizer (ASan)
● Undefined behavior Sanitizer (UBSan)
● Memory Sanitizer (MSan)
● LeakSanitizer (LSan)
● ThreadSanitizer (TSan)



Greybox fuzzing

Does it find new coverage?

● Save input

● Return to start



What about…

● Non-file, non-*nix fuzzing
○ E.g., network services, OS kernel, IoT, …

● Overcoming “roadblocks”
○ E.g., complex conditionals



*nix file fuzzing

● Primary focus of academic research

● Assumes an “obvious” entry point
○ AFL-style fuzzing: main + fread
○ libFuzzer: dedicated LLVMFuzzerTestOneInput

● Commonly assumes source code



*nix file fuzzing

● Primary focus of academic research

● Assumes an “obvious” entry point
○ AFL-style fuzzing: main + fread
○ libFuzzer: dedicated LLVMFuzzerTestOneInput

● Commonly assumes source code

What is the entry point for a network service / OS kernel / IoT 
device? 🤔



Network apps

Challenges

● State
● Setup/teardown connection cost
● What is “coverage”?

Solutions

● Snapshots
○ No need to start from scratch each time

● Annotate/infer states



OS kernel

Challenges

● Measuring coverage
● Performance
● Seeds?

Solutions

● kCOV + kASan
● Hypervisor + PMU
● Seeds = syscall traces



IoT

Challenges

● Measuring coverage
● Performance
● Seeds?

Solutions

● QEMU (slow / incomplete)
● Avatar2 orchestration



Overcoming “roadblocks”

Program constraints that are hard to 
meet

Solutions

● Whitebox fuzzing
● Concolic execution
● Rewrite the target 🧐



Whitebox fuzzing

Symbolic execution

● Translate expressions into symbolic formulae
● Program paths accumulate formulae into constraints
● Constraints are solved (via a SAT / SMT solver)

Challenges

● Expensive / slow
● Modeling “external environment”



Concolic fuzzing

Concolic = concrete + symbolic

● Symbolic values augmented with concrete values
● Can always fall back to concrete values

Solutions

● Angora: Treat solver as optimization problem
● SymCC: Compiles concolic executor into the binary
● JIGSAW: JIT compile constraints 🤯 



What about…

● Directed fuzzers?

● Determining when we’ve “fuzzed enough”?

● Benchmarking fuzzers?



● Directed fuzzers?

● Determining when we’ve “fuzzed enough”?

● Benchmarking fuzzers?

What about…



Conclusions

● Fuzzing research has progressed in leaps and bounds
○ No longer just “file-based + *nix-based”

● Still many open problems

● Balance between performance and accuracy




