
Seed Selection for
Successful Fuzzing

Adrian Herrera, Hendra Gunadi, Shane Magrath,
Michael Norrish, Mathias Payer, Antony L. Hosking

whoami

● PhD student at the Australian

National University

● Interests in fuzzing, binary

analysis, program analysis

2

3

What is Fuzzing?

Automated program testing technique

1. Feed your program malformed inputs

2. Monitor your program for crashes

3. Return to 1.

4

Is that it?

5

Is that it?

Not quite!

6

A Generic Mutational Greybox Fuzzer

7

A Generic Mutational Greybox Fuzzer

8

How to select these seeds? Why does it matter?

Seed Selection Practices

9

From “Evaluating Fuzz Testing”, Klees et al.

“Most papers treated the choice of seeds casually, apparently

assuming that any seed would work equally well, without

providing particulars.”

Seed Selection Practices

Since 2018

● 3 studies do not report seeds

● 7 studies use benchmark/fuzzer-provided seeds

● 2 studies use manually-constructed seeds

● 5 studies use random seeds

○ 2 studies use a corpus minimization tool

● 8 studies use the empty seed

10

Does seed choice
matter?

11

A Reproduction Experiment: RedQueen

12

Initial corpus

“Unless stated otherwise, we used an uninformed,

generic seed consisting of different characters

from the printable ASCII set”

ABC...XYZabc...xyz012...789!”$...~+*

A Reproduction Experiment: RedQueen

13

readelf results

● honggfuzz and AFLFast perform poorly

● RedQueen is the best performer

A Reproduction Experiment: RedQueen

14

readelf results

● honggfuzz and AFLFast perform poorly

● RedQueen is the best performer

What if we vary the initial seeds?

A Reproduction Experiment: RedQueen

15

Uninformed Original ASCII seed

Valid Singleton ELF (from AFL)

Corpus Collection of ELF files
sourced from AllStar and
Malpedia datasets
(minimized with afl-cmin)

Seed choice matters!

16

Seed Selection Practices

Since 2018

● 3 studies do not report seeds

● 7 studies use benchmark/fuzzer-provided seeds

● 2 studies use manually-constructed seeds

● 5 studies use random seeds

○ 2 studies use a corpus minimization tool

● 8 studies use the empty seed

17

Seed Selection Practices

Since 2018

● 3 studies do not report seeds

● 7 studies use benchmark/fuzzer-provided seeds

● 2 studies use manually-constructed seeds

● 5 studies use random seeds

○ 2 studies use a corpus minimization tool

● 8 studies use the empty seed

18

Corpus Minimization

19

Why?

● Collecting random seeds may result in behavioral duplication

○ Behaviorally equivalent seeds should be represented by a single seed

● x2 overhead from opening/closing test-cases

○ Minimize size of individual seeds

Corpus Minimization

“Given a large collection of inputs for a particular target (the

collection corpus), how do we select a subset of inputs that will

form the initial fuzzing corpus?”

20

Existing Approaches to Corpus Minimization

MinSet

● “Optimizing Seed Selection for Fuzzing”, Rebert et al.

● Models corpus minimization as a minimum set cover

● Also weights seeds by execution time or file size

afl-cmin

● Shipped with AFL

● Takes into account edge counts

21

These approaches
are greedy and rely
on heuristics

22

OptiMin

● Exact minimum set covers are computable using a MaxSAT solver

● Also performs weighted minimizations (file size)

● 6% decrease in corpus size vs. MinSet

● 83% decrease in corpus size vs. afl-cmin

Available at https://github.com/HexHive/fuzzing-seed-selection

Also available in AFL++ at

https://github.com/AFLplusplus/AFLplusplus/tree/stable/utils/optimin

23

https://github.com/HexHive/fuzzing-seed-selection
https://github.com/AFLplusplus/AFLplusplus/tree/stable/utils/optimin

But what effect does
this have on fuzzing?

24

Evaluation

25

Benchmarks

● Magma (x7 targets)

● Google Fuzzer Test Suite (x10 targets)

● “Real-world” programs (x6 targets)

Fuzzers

● AFL

● AFL++

Corpora

● FULL collection corpus

● EMPTY seed

● PROVided seeds

● MinSet (MSET)

● afl-cmin (CMIN)

● OptiMin weighted by file size (WOPT)

● WOPT weighted by edge frequencies

(WMOPT)

Evaluation

26

Benchmarks

● Magma (x7 targets)

● Google Fuzzer Test Suite (x10 targets)

● “Real-world” programs (x6 targets)

Fuzzers

● AFL

● AFL++

Corpora

● FULL collection corpus

● EMPTY seed

● PROVided seeds

● MinSet (MSET)

● afl-cmin (CMIN)

● OptiMin weighted by file size (WOPT)

● WOPT weighted by edge frequencies

(WMOPT)

33 CPU-years

Bug Finding Results

Both AFL and AFL++ perform better when bootstrapped with a minimized corpus,
although the exact minimization tool is inconsequential. While both AFL and
AFL++ find a similar number of bugs, AFL is generally faster to do so (and with
less variance in bug-finding times).

27

● EMPTY results highly variable, but occasionally the best performer on

highly-unstructured data (e.g., SoX)

● Low iteration rates + large corpora = negative impact

● x7 CVEs in real-world targets (libtiff, poppler, SoX)

Bug Finding Results

● AFL/AFL++ perform better with one of CMIN, MSET, or W[M]OPT

● AFL generally faster at finding bugs

● EMPTY results highly variable

○ Occasionally the best performer on highly-unstructured data (e.g., SoX)

● Low iteration rates + large corpora = negative impact

● x7 CVEs in real-world targets (libtiff, poppler, SoX)

28

Code Coverage Results

Seed selection has a significant impact on a fuzzer’s ability to expand code
coverage. When fuzzing with the empty seed, more-advanced fuzzers (e.g.,
AFL++) are able to cover more code. However, this advantage all but disappears
when bootstrapping the fuzzer with a minimized corpus, as faster iteration rates
become more critical. The exact minimzation tool remains inconsequential.

29

● On average, EMPTY explores half as much code

○ Decreases more when mutating highly-structured inputs (e.g., XML)

● Little distinguishes coverage achieved by non-empty corpora (after 18h trial)

Code Coverage Results

● AFL/AFL++ perform better with one of CMIN, MSET, or W[M]OPT

● On average, EMPTY explores half as much code

○ Increases when fuzzing with AFL++

○ Decreases more when mutating highly-structured inputs (e.g., XML)

● Little distinguishes coverage achieved by non-empty corpora (after 18h trial)

30

See our paper for full
results

31

Conclusion

● Choice of fuzzing corpus is a critical and often-overlooked decision

○ It must be specified in your paper

● Smarter fuzzers get more mileage out of an empty seed

● Maximize fuzzing yield with minimized corpora

● Code available at https://github.com/HexHive/fuzzing-seed-selection

● Data available at

https://datacommons.anu.edu.au/DataCommons/rest/records/anudc:6106/data/

32

https://github.com/HexHive/fuzzing-seed-selection
https://datacommons.anu.edu.au/DataCommons/rest/records/anudc:6106/data/

