Seed Selection for
Successful Fuzzing

Adrian Herrera, Hendra Gunadi, Shane Magrath,
Michael Norrish, Mathias Payer, Antony L. Hosking

Australian DST @~ e
' > National P G

—3 University GROUP Ns

whoami

e PhD student at the Australian
National University
e Interests in fuzzing, binary

analysis, program analysis

Australian 1 @ o
@g National DS . [a™ | 2
@, N7

3 University GROUP

Australian
& National
M University

DST -

GROUP @

/

-
[&™
SN -

Seed Selection for Successful Fuzzing

Adrian Herrera Hendra Gunadi Shane Magrath
ANU & DST ANU DST
Australia Australia Australia
Michael Norrish Mathias Payer Antony L. Hosking
CSIRO’s Data61 & ANU EPFL ANU & CSIRO’s Data61
Australia Switzerland Australia
ABSTRACT ACM Reference Format:
Mutation-based greybos fi bly the most widely- Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias
3 : : Payer, and Antony L. Hosking. 2021. Seed Selection for Successful Fuzzing.
used fuzzing lies on a set of hing seed mpuls

(2 corpus) to bootstrap the bug-finding process, When
fuzzer, common approaches for constructing this corpus mclude
(i) using an empty file; (ii) using a single seed representative of the
target’s input format; or (iii) collecting a large number of seeds (e.g.,
by crawling the Internet). Little thought is given to how this seed
choice affects the fuzzing process, and there is no consensus on
which approach is best (or even if a best approach exists).

To address this gap in knowledge, we systematically investigate
and evaluate how seed selection affects a fuzzer’s ability to find bugs
in real-world software. This includes a systematic review of seed
selection practices used in both evaluation and deployment con-
texts, and a large-scale empirical evaluation (over 33 CPU-years) of
six seed selection approaches. These six seed selection approaches
include three corpus minimization techniques (which select the
smallest subset of seeds that trigger the same range of instrumen-
tation data points as a full corpus).

Our results d that fuzzing out vary
depending on the initial seeds used to bootstrap the fuzzer, with min-
imized corpora outperforming singleton, empty, and large (in the
order of thousands of files) seed sets. Consequently, we encourage
seed selection to be foremost in mind when evaluating/deploying
fuzzers, and recommend that (a) seed choice be carefully considered
and explicitly documented, and (b) never to evaluate fuzzers with
only a single seed.

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; - Security and privacy — Software and application
security.

KEYWORDS

fuzzing, corpus minimization, software testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA '21, July 11-17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8459-9/21/07.

https://doi.org/10.1145/3460319.3464795

In Proceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA '21), July 11-17, 2021, Virtual, Denmark. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3460319.3464795

1 INTRODUCTION

Fuzzing is a dynamic analysis technique for finding bugs and vul-
nerabilities in software, triggering crashes in a target program by
subjecting it to a large number of (possibly malformed) inputs.
Mutation-based fuzzing typically uses an initial set of valid seed
inputs from which to generate new seeds by random mutation. Due
to their simplicity and ease-of-use, mutation-based greybox fuzzers
such as AFL [74], honggfuzz [64], and libFuzzer [61] are widely
deployed, and have been highly successful in uncovering thousands
of bugs across a large number of popular programs [6, 16]. This
success has prompted much research into improving various as-
pects of the fuzzing process, including mutation strategies [39, 42],
energy assignment policies [15, 25], and path exploration algo-
rithms [14, 73]. However, while researchers often note the impor-
tance of high-quality input seeds and their impact on fuzzer perfor-
mance [37, 56, 58, 67), few studies address the problem of optimal de-
sign and construction of corpora for mutation-based fuzzers [56, 58],
and none assess the precise impact of these corpora in coverage-
guided mutation-based greybox fuzzing.

Intuitively, the collection of seeds that form the initial corpus
should generate a broad range of observable behaviors in the target.
Similarly, candidate seeds that are behaviorally similar to one an-
other should be represented in the corpus by a single seed. Finally,
both the total size of the corpus and the size of individual seeds
should be minimized. This is because previous work has demon-
strated the impact that file system contention has on industrial-scale
fuzzing, In particular, Xu et al. [71] showed that the overhead from

g test: and ion between workers
cach introduced a 2x overhead. Time spent opening/closing test-
cases and synchronization is time diverted from mutating inputs
and expanding code coverage. Minimizing the total corpus size and
the size of individual test-cases reduces this wastage and enables
time to be (better) spent on finding bugs.

Under these assumptions, simply gathering as many input files
as possible is not a reasonable approach for constructing a fuzzing
corpus. Conversely, these assumptions also suggest that beginning
with the “empty corpus” (e.g, consisting of one zero-length file)
may be less than ideal. And yet, as we survey here, the majority
of published research uses either (a) the “singleton corpus” (e.g., a
single seed representative of the target program’s input format),

What is Fuzzing?

Automated program testing technique

1. Feed your program malformed inputs
2. Monitor your program for crashes

3. Returnto 1.

Australian s @ -
‘.‘_ % National D T { Y | E{\TA |

Universty GROUP @ N~

Is that it?

Australian T &>~
National D s o® / DATA

University GROUP

Is that 1t?
Not quite!

[+ Australian -~
@S> National Ds I ®.
a2y University GROUP

A Generic Mutational Greybox Fuzzer

Initial seed
corpus

Discarded
inputs

:>r- ::> Mutation > Runtime —— |T|
- engine monitor I of

. . Queue
> Coverage map :>ﬁ
Instrumented m
Sttar et Crashes
m Fuzzer
10110 I

10100

agx

Australian D ST U EEN -~
_¢, National . [a™ |
L) N~

University GROUP

A Generic Mutational Greybox Fuzzer

Initial seed
corpus

Instrumented
target

101 N
01010
10110 M
10100
e

Discarded
inputs

|:||> ﬂ |:||> Mutation Runtime D Q

- engine > monitor iy i i
Queue

Coverage map :>ﬂ

EEEEEN iy

Crashes

Vv

Fuzzer

Australian o>~ 7
_¢, National DST .. / | SaTA |
N7

University GROUP

Seed Selection Practices

From “Evaluating Fuzz Testing”, Klees et al.

“Most papers treated the choice of seeds casually, apparently
assuming that any seed would work equally well, without

providing particulars.”

Australian D ST &> x I{ATA |

_‘ National
University GROUP .. E/

Seed Selection Practices

Since 2018

e 3 studies do not report seeds
e 7 studies use benchmark/fuzzer-provided seeds
e 2 studies use manually-constructed seeds
e 5 studies use random seeds
o 2 studies use a corpus minimization tool

e 8 studies use the empty seed

Australian &>~ -~
e,, National D ST A

g2y University GROUP o®

10

ViR

/,5’"]
(;\)ﬁ) .|
AN A5
AN

Does seed choice
matter?

Australian T =
National D s (Y. Ef\m
Universty GROUP @

A Reproduction Experiment:

Initial corpus

“Unless stated otherwise, we used an uninformed,
generic seed consisting of different characters

from the printable ASCII set”

ABC.

Australian
National
University

XYZabc..

DST

GROUP

&>~

. 7
()

xyz012

7
L& |

7891”

A

RedQueen

REDQUEEN: Fuzzing with
Input-to-State Correspondence

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik and Thorsten Holz
Ruhr-Universitit Bochum

Abstract—Automated software testing based on fuzzing has
experienced a revival in recent years. Especially feedback-driven
fuzzing has become well-known for its ability to efficiently
perform randomized testing with limited input corpora. Despite
a lot of progress, two common problems are magic numbers
and . C ? i

as taint tracking and symbolic execution are typically used to
overcome such roadblocks. Unfortunately, such methods often
require acces Lo source code,a rather precise descipton of the
environment (¢.g., the underlying OS),
or e exact semanice of the platform’s instruetion sef

is paper, we introduce a lightweight, yet very effective
ateomative o oot tracking and symbolic exeeution to acitnte
and optimize state-of-the-art feedback fuzzing that easily scales
to large binary lppllmlmm snd unknown environments, We
serve the n of a given program,

of the mpm oten end up direcly Loy nearty wnmodited
h state. This input-to-state correspondence can
be exploited to create a robust method to overcome common
fuzzing roadblocks in a highly effective and efficient manner.
Our prototype implementation, called REDQUEEN, is able to
solve magic bytes and (nested) checksum tests automatieally
for a given binary exceutable. Additionally, we show that our
techniques outperform various state-of-the-art tools on a wide
variety of targets across different privilege levels (kernel-space
and userland) with no platform-specific code. REDQUEEN is the
first method to find more than 100% of the bugs planted in
Lisa-M acrom tagets. Futhermaors, we e aleto dicavee
ew bugs and obtained 16 CVESs in multiple programs and

S bernt awers Finally, our evaluation demonstrates that
REDQUEEN s fast, widely applicable and outperforms concurvent

approaches by up to three orders of magnitude.

1. INTRODUCTION

Fuzzing has become a critical component in testing the
quality of software systems. In the past few years, smarter
fuzzing tools have gained significant traction in academic
rescarch as well as in industry. Most notably, american fuzzy
lop (AEL [44]) has had a significant impact on the security
landscape. Due to its ease of use, it is now convenient
to more thoroughly test software, which many researchers
and developers did. On the academic side, DARPA's Cyber
Grand Challenge (GGC) convincingly demonstrated that fuzzing
remains highly relevant for the state-of-the-art in bug finding
all teams used this technique to uncover new vulnerabilities.

Network and Distributed Systems Security (NDSS) Symposium 2019
2427 Febmary 2019, San Dicgo, CA, USA
ISBN 1-891562.5:

hitps:/d.doi. AT s 201923571
wwwindss-symposium.org

Following CGC, many new fuzzing methods were presented
which introduce novel ideas to find vulnerabilitics in an
efficient and scalable way (e.g., [10], [16], [19], [31], [34]-
[38]).

To ensure the adoption of fuzzing methods in practice,
fuzzing should work with a minimum of prior knowledge.
Unfortunately, this clashes with two assumptions commonly
made for efficiency: (i) the need to start with a good corpus of
seed inputs or (ii) to have a generator for the input format. In
absence of either element, fuzzers need the ability to learn
what interesting inputs look like. Feedback-driven fuzzing,
a concept popularized by AFL, is able to do so: Interesting
inputs which trigger new behavior are saved to produce more
testeases, everything else is discarded.

A. Common Fuzzing Roadblocks

To motivate our approach, we first revisit the problem of
efficiently uncovering new code, with a focus on overcoming
common fuzzing roadblocks. In practice, two common prob-
lems in fuzzing are magic numbers and checksum tests. An
example for such code can be seen in Listing 1. The first bug
can only be found if the first 8 bytes of the input are a specific
magic header. To reach the second bug, the input has (0 contain
the strin and two correct checksums. The probability of
randomly creating an input that satisfies these conditions is
negligible. Therefore, feedback-driven fuzzers do not produce
new coverage and the fuzzing process stalls.

Listing 1: Roadblocks for feedback-driven fuzzing

In the past, much attention was paid to address such road-
blocks. Different approaches were proposed which typically
ik wet advanced program analysis techniques, such as
taint tracking and symbolic execution [12], [13], [16], [22],
[25). 6], (351, 138], 140) Notably, both ANGORA [16] and
T-Fuzz [34] fall into this category. These approaches usually
require a rather precise description of the environment (e.g.,
behavior of library calls or the underlying OS) and the exact
semantics of the platform’s instruction set. As a result, it is
hard to use this methods on targets that use complex instruction
set extensions (i.c., floating point instructions) or uncommon

12

A Reproduction Experiment: RedQueen

—®— LAF-INTEL —*— KAFL HonGGFuzz
¥— AFLFAST +— KLEE *— VUZZER
readelf results =m
ar size
200 3000
2500

600 vuus -,
it

e honggfuzz and AFLFast perform poorly o s PN i

IR oS
500 {a A A A

00:00 05:00 10:00 00:00 05:00 10:00

e RedQueen is the best performer - gl -

2000

00 00:00 05:00 10:00

objdump

#BBs found

6000

4000

I
2000 i ekl

o i » 7 [05:00 v;n‘;uo &oo 05:00 10:00
= ﬁg?trall?n DS I 4 /\ | DATA |

«SS% National o &1)

Universty GROUP @ NG Time (hh:mm)

A Reproduction Experiment: RedQueen

readelf results

—=— LAF-INTEL
¥— AFLFAST
—+— REDQUEEN

ar

—— KAFL
+— KLEE

HoNGGFuzz
VUuzzER

size

200 r‘ 3000

’ ’(’r ' 2500
‘ lz 2 Ly hokhAd 5000
a d / “ Ll Ill aaaad
. f n aSt erfor OO rl 400 “mwps 1500
1000 R
» U o |
500 {ak A aAa
00:00 05:00 10:00 00:00 ‘li 00 10:00
exxfilt strings

e RedQueen is the best performer

2500

10:00 00:00

0500
objdump

#BBs found

What if we vary the initial seeds?

10000

8000

6000

4000
po222id
. pres
10000 sesererrpeR HIPOOOE 2000 2
| 2a AL s add oA arAAk sl rere xRN S
00:00 05:00 10:00 00:00 05:00 10:00
readelf as-new
8000
6000
6000
4000
4000
2000 2000
00:00 05:00 10:00 00:00 05:00 10:00

\ Australian
=

<=/, National
M University

DST &7 (i
b1
. N~

GROUP

Time (hh:mm)

14

A Reproduction Experiment: RedQueen

Seed Fuzzer
—— Uninformed —— AFLFast

Valid === AFL++

Corpus e honggfuzz

Uninformed | Original ASCII seed

60 —

Singleton ELF (from AFL)

50

= Corpus Collection of ELF files
Z’ sourced from AllStar and
£ Malpedia datasets

(minimized with af1-cmin)

1)
oS
|

10 /??

0 1 2 5 10
Time (h)

— , . P

[] Australian D ST { Bk

&>/, National @ | BATA
~N-

N
ooy University GROUP @

R

Seed choice matters!

2+ Australian { BEN
@S> National D s I ®.
Ga—g University GROUP

16

Seed Selection Practices

Since 2018

e 3 studies do not report seeds
e 7 studies use benchmark/fuzzer-provided seeds
e 2 studies use manually-constructed seeds
e 5 studies use random seeds
o 2 studies use a corpus minimization tool

e 8 studies use the empty seed

Australian &>~ -~
e,, National D ST A

g2y University GROUP o®

17

Seed Selection Practices

o 2 studies use a corpus minimization tool

] Australian DST { BEN
<<=, National @ DATA

Gz University GROUP

18

Corpus Minimization
Why?

e C(Collecting random seeds may result in behavioral duplication
o Behaviorally equivalent seeds should be represented by a single seed
e X2 overhead from opening/closing test-cases

o Minimize size of individual seeds

Australian @ =
Q,, National DST . [a™ |

Universty GROUP @ ~-

19

Corpus Minimization

“Given a large collection of inputs for a particular target (the
collection corpus), how do we select a subset of inputs that will

form the initial fuzzing corpus?”

Australian @ =
e‘t, National DST . [a™ |
U L

niversity GROUP N

20

Existing Approaches to Corpus Minimization

MinSet

e “Optimizing Seed Selection for Fuzzing”, Rebert et al.
e Models corpus minimization as a minimum set cover

e Also weights seeds by execution time or file size
afl-cmin
e Shipped with AFL

e Takes into account edge counts

Australian D ST &> x AT

% National I |
University GROUP .. 3/

21

.
WA |
(8-
e\ |
e

These approaches
are greedy and rely
on heuristics

Australian T =
National D s (Y. Ef\m
Universty GROUP @

OptiMin

e Exact minimum set covers are computable using a MaxSAT solver
e Also performs weighted minimizations (file size)
e 6% decrease in corpus size vs. MinSet

e 83% decrease in corpus size vs. afl-cmin

Available at https://qgithub.com/HexHive/fuzzing-seed-selection

Also available in AFL++ at

https://github.com/AFLplusplus/AFL plusplus/tree/stable/utils/optimin

Australian DS1 a®> 7
@g National .. Y [a™ |
' N -

University GROUP

23

https://github.com/HexHive/fuzzing-seed-selection
https://github.com/AFLplusplus/AFLplusplus/tree/stable/utils/optimin

.
N
(1\)28). .

e\ |

But what effect does
this have on fuzzing?

Australian T =
National D s (Y. Ef\m
Universty GROUP @

Evaluation

Benchmarks

e Magma (X7 targets)
e Google Fuzzer Test Suite (x10 targets)

e “Real-world” programs (x6 targets)

Fuzzers
o AFL
o AFL++

Australian &>~ -~
_¢, National DST .. / [a™ |
N~

University GROUP

Corpora

e FULL collection corpus

o EMPTY seed

e PROVided seeds

e MinSet (MSET)

e afl-cmin (CMIN)

e OptiMin weighted by file size (WOPT)

e WOPT weighted by edge frequencies
(WMOPT)

25

Evaluation

Australian D ST U 22N
g DST &

ersty GROUP

e

| DATA
b1

N7~

26

Bug Finding Results

Both AFL and AFL++ perform better when bootstrapped with a minimized corpus,
although the exact minimization tool is inconsequential. While both AFL and
AFL++ find a similar number of bugs, AFL is generally faster to do so (and with

less variance in bug-finding times).

e EMPTY results highly variable, but occasionally the best performer on
highly-unstructured data (e.g., SoX)
e Low iteration rates + large corpora = negative impact

e X7 CVEs in real-world targets (libtiff, poppler, SoX)

Australian DS1 &> 7
e_', National . [a™ |

Universty GROUP @ ~-

27

Bug Finding Results

e AFL/AFL++ perform better with one of CMIN, MSET, or W[M]OPT
e AFL generally faster at finding bugs
e EMPTY results highly variable
o Occasionally the best performer on highly-unstructured data (e.g., SoX)
e Low iteration rates + large corpora = negative impact

e X7 CVEs in real-world targets (libtiff, poppler, SoX)

Australian @ =
Q_', National DST . [a™ |

Universty GROUP @ ~-

28

Code Coverage Results

Seed selection has a significant impact on a fuzzer’s ability to expand code
coverage. When fuzzing with the empty seed, more-advanced fuzzers (e.g.,
AFL++) are able to cover more code. However, this advantage all but disappears
when bootstrapping the fuzzer with a minimized corpus, as faster iteration rates
become more critical. The exact minimzation tool remains inconsequential.

e On average, EMPTY explores half as much code
o Decreases more when mutating highly-structured inputs (e.g., XML)
e Little distinguishes coverage achieved by non-empty corpora (after 18h trial)

Australian o>~ 7
e_c, National DST .. 7 | DaTA | »
N7

g2y University GROUP

Code Coverage Results

e AFL/AFL++ perform better with one of CMIN, MSET, or W[M]OPT
e On average, EMPTY explores half as much code
o Increases when fuzzing with AFL++
o Decreases more when mutating highly-structured inputs (e.g., XML)

e Little distinguishes coverage achieved by non-empty corpora (after 18h trial)

Australian D ST &> x AT

% National | |
University GROUP .. E/

30

ViR

/,5’"]
(:\)ﬁ) .|
AN A5
AN

See our paper for full
results

Australian T { BEN
National D s (Y. DATA
Universty GROUP @

Conclusion

e Choice of fuzzing corpus is a critical and often-overlooked decision
o It must be specified in your paper
e Smarter fuzzers get more mileage out of an empty seed

e Maximize fuzzing yield with minimized corpora

e (Code available at https://github.com/HexHive/fuzzing-seed-selection

e Data available at
https://datacommons.anu.edu.au/DataCommons/rest/records/anudc:6106/data/

Australian DS1 a®> 7
@g National .. Y [a™ |
' N -

University GROUP

https://github.com/HexHive/fuzzing-seed-selection
https://datacommons.anu.edu.au/DataCommons/rest/records/anudc:6106/data/

