The Hitchhiker’s
Guide to Fuzzer
Coverage Metrics



S whoami

e > 10 years as a security researcher @ DSTG

e Principal vulnerability researcher @ Interrupt Labs

e Just submitted my PhD @ ANU &%




S whoami

e > 10 years as a security researcher @ DSTG

e Principal vulnerability researcher @ Interrupt Labs

e Just submitted my PhD @ ANU &%

Me as a grad student

(sometimes)



Let’s talk (more)
about fuzzing



What is Fuzzing?

1.

2.

Generate random/invalid data
Execute target with said data
See if target breaks

Return to 1.
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Fuzzing 101

Fuzzers find bugs by exploring a target’s
State space

C ove,r*age, Map

Approximate the target’s state space and
track at runtime

e Must be lightweight! Runtime wmonitor

Retain inputs uncovering new states



Fuzzing 101

Fuzzers find bugs by exploring a
target’s state space

Approximate the target’s state space Coverage wmap
' // //f > / \|
and track at runtime -/// 7 /117

e Must be lightweight! Runtime monitor

Retain inputs uncovering new states

You can’t find bugs in states never covered



How do we measure
coverage?




Abstraction!

Approximate program states

e Control flow

e Data flow



Control Flow

Decompose a function into a p
control-flow graph O \ ©7
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Control Flow: Basic Blocks
Decompose a function into a
control-flow graph

Record when nodes are covered

What’s the problem?



Control Flow: Edges

Decompose a function into a @
control-flow graph O \ @
Record when redes edges are covered @
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Control Flow: Edges

Label nodes (at compile time)




Control Flow: Edges

At start of each block (at runtime):

1. Edge ID = Prev block A Curr block
2. Prev block = Right-shift Curr block
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Control Flow: “Better” Edges

Transform the CFG and split critical
edges

An edge whose destination has multiple

predecessors and source has multiple
successors



Control Flow: “Better” Edges

Transform the CFG and split critical
edges

An edge whose destination has multiple

predecessors and source has multiple
successors

Insert a “dummy” block. Now, block coverage => edge coverage



What else can we do
with control flow?




Context Sensitivity

Consider the calling context

|.e., the chain of function calls leading to
current location




Context Sensitivity

Label nodes and functions (at compile time)

At function call and return (at runtime):

1. Call ctx = Call ctx N Function ID

At start of each block (at runtime):

1. Edge ID = Prev block A Curr block A Call ctx
2. Prev block = Right-shift Curr block



Context Sensitivity, Issues

Return of collisions

e Requires increasing coverage map size => slowdown

“Queue explosion”

e Retain useless seeds



Predictive Context Sensitivity

Function cloning

e Turn a context-insensitive analysis to a
context-sensitive analysis
e No more collisions!

Predictive Context-
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In this paper, we show that a much more effective approach
o contextensitv fuzing s posbie.Firt we propose functon
2 us a backward-compatible instrumentation primitive
precise (L., collision-free) context-sensitive coverage

o tame the state explosion problem, we 2

res
contexts selected as promising. We propose a prediction scheme
o identity one ponl of mch conlexti: we analyze the data-flow
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1. INTRODUCTION

Fuzz testing (or fuzzing for short) techniques eamed a
prominent place in the software security research landscape
over the last decade. Their efficacy in generating unexpected
or invalid inputs that make a program crash helps developers
catch bugs early, even before they com it vulurabili s 11]
As an example, their deployment at scale in the O

e has led so far to the discovery of over 30000 h\lp
in the mm testing of hundreds of open-source projects

Network and Distributed System Security (NDSS) Symposium 2024
26 February - | March 2034, San Dicgo, CA, USA
ISBN 1-891562-93-2
hutps//dx doi.org/10.14722/ndss.2024.24113
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The most popular and researched form of fuzzing is
coverage-guided fuzzi ). which uses code or other cov-
erage information from progran cution to deem whether the
Cument esting imput i steresin (for example, previously
unscen) potions of  program. The i intuiton bekind much
research is that code coverage is strongly rrel ted with

e [3] mJ no dynamic testing technique detect

i if execution does not reach the co :\p\mdmu program

frectiveness of the input
y guiding input mutations to meet
complex control-flow Condiions i the program [4], [5], [6].

However, for software testi e is only one part
the equaiion 7). and the ultimate metric foeite e
tiveness of fuzzing remains the ability to discover bugs. As
recently observed in [8], successful CGF embodiments balne
between exploration and exploitation. While exploration aims
10 increase coverage, exploitation tries to trigger bugs in
already-covered program regions by varying the inputs wac]
to reach them before. As there is no immediate feedba
for exploitation, fuzzers have to count on input mutations to
ute such code “sufficiently well” (o trigger bugs in it [8].

Therefore, other efforts focus on retaining for further
‘mutation inputs that, while being equivalent 1o prior executions
in terms of covered program points. exercise new valuable
execution paths and/or internal states of the program [9]
Intuitively, these inputs onc, alternative (and possibly more
profitable) “starting points™ for the above-said mutations to
irigger some bugs. For example, most suteofhe-ant OGF
systems track edge coverage information to distinguish visits
1o the ame basic block from different predeceseor blocks 10

Edge coverage and other function-local metr ,nm and
summarize program execution for its effects on

le blocks, variable values) involving individual fancions
A limitation of this srategy s that it may lead a fuzzer to
overlook internal program states for which also how an entity is
reached matters. In program ay
the name of context-sensitivity and has s
such as refining the precision of pointer analyses [11] and
developing compiler optimizations [12]

Ancora [1] siowesscs the besefits of eontex sensivy
for fuzzing by augs edge calling-context
inforcnaion; which captuss (e sequecce of acive faaction
calls on the stack leading to the currently executing func-
tion [13]. In principle, such a fully context-sensitive approach
can differentiate the coverage of each testcase in a fine-grained
‘manner and lead to the discovery of more bugs [1], [10].




Predictive Context Sensitivity

Can’t clone everything

e Use static analysis to inform
context-sensitivity

e Favor call sites that see a higher
diversity of for incoming data flow in
function arguments

e Use points-to analysis to determine
diversity
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There’s that “data
flow” thing again...



Data Flow Analysis

Process of collecting information about the ways variables are defined
and used in a program

In compilers:
e Enables optimizations
In testing:

e Useful technique for measuring coverage



ining Data Flow Coverage
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Abstract

This paper examines a family of program test data selection
criteria derived from data flow analysis techniques similar to those
used in compiler optimization. It is argued that currently used path
selection criteria which examine only the control flow of a program
are inadequate. Our procedure associates with each point in a
program at which a variable is defined, those points at which the
value is used. Several related path criteria, which differ in the
number of these associations needed to adequately test the
program, are defined and compared.

Introduction

Program testing is the most commonly used method for
demonstrating that a program actually accomplishes its intended
purpose. The testing procedure consists of selecting elements from
the program’s input domain, executing the program on these test
cases, and comparing the actual output with the expected output
(in this discussion, we assume the existence of an "oracle", that is,
some method to correctly determine the expected output). While
exhaustive testing of all possible input values would provide the
most complete picture of a program’s performance, the size of the
input domain is usually too large for this to be feasible. Instead,
the usual procedure is to select a relatively small subset of the
input domain which is, in some sense, representative of the entire
input domain. An evaluation of the performance of the program
on this test data is then used to predict its performance in general.
Ideally, the test data should be chosen so that executing the
program on this set will uncover all errors, thus guaranteeing that
any program which produces correct results for the test data will
produce correct results for any data in the input domain.
However, discovering such a perfect set of test data is a difficult, if
not impossible task [1,2]. In practice, test data is selected to give
the tester a feeling of confidence that most errors will be
discovered, without actually guaranteeing that the fested and
debugged program is correct. This feeling of confidence is

seléct paths through the program whose elements fuifill the chosen
criterion, and then to find the input data which would cause each
of the chosen paths to be selected.

Using path selection criteria as test data selection criteria has
a distinct weakness. Consider the strongest path selection criterion
which requires that alf program paths py,pj,... be selected. This
effectively partitions the input domain D into a set of classes
D=UD[j] such that for every x€D, x€D[) if and only if
executing the program with input x causes path p; to be traversed.
Then a test T=l1,15,..}, where 1,€D[j] would seem to be a
reasonably rigorous test of the program. However, this still does
not guarantee program correctness. If one of the Dl is not
revealing (2], that is for some x,€D(] the program works
correctly, but for some other x,€D[j] the program is incorrect,
then if x, is selected as #; the error will not be discovered. In
figure 1 we see an example of this.

START

based on the dataflow coverage criteria.
We have adapted these dataflow cover-
age definitions to define realistic
dataflow coverage measures for C pro-
grams. A coverage measure associates a
value with a set of tests for a given pro-
gram. This value indicates the complete-
ness of the set of tests for that program.
We define the following dataflow cover-
age measures for C programs based on
Rapps and Weyuker’s’ definitions: block,
decision, c-use, p-use, all-uses,
path, and du-path.

—

Figure 1. Sum.c
computes the sum
and product of
numbers from 0
toN.

A definition
of variable i

A basic Mork/ }

#include <stdio.h>
main(}

ntn. i k. sum. prod:

printf("Enter an integer and 0 for +. 1 for *: )
scanf("°od °o". &n. &k)
sum = 0
prod = 1:
i=1 g
while (i <=n) \

; Iye i X
Sum += ;4 Uses of variable i
rod *=[;
AT
itk == 0)
printf("n = °ed. sUM = °od\n’. n, sum);

Precisely defining these con-
cepts for the C language requires
some care, but the basic ideas
can be illustrated by the exam-
ple in Figure 1. We define the
measures to be intraprocedural,
so they apply equally well to in-
dividual procedures (functions),
sets of procedures, or whole pro-
grams.

Block. The simplest example

All-uses

C-uses P-uses
——

Decisions

Basic blocks
ATAC
coverage
measures

it(k == 1)

\ printf('n = cd. prod = °od\n". n. prod).
‘A decision predicate
involving variable k

gram behavior, presumably due to one
or more faults in the code.)

Figure 2 suggests an ordering of the
coverage criteria. In this hierarchy. block

of a coverage measure is basic
block coverage. The body of a C
procedure may be considered as
a sequence of basic blocks. These
are portions of code that nor-

Figure 2. A hierarchy of control and
dataflow coverage measures.

coverage is weaker than decision cover-
age, which in turn is dominated by p-use
coverage. C-use coverage dominates both
block and decision coverage but is inde-
pendent of p-use coverage; both c-use and




Data-flow coverage
Is the tracking of
def-use chains
executed at runtime



Def-Use Chain Coverage

Def site: Variable allocation site (static or dynamic)

Use site: Variable access (read and/or write)

Def-use chain: Path between a def and use site



Def-Use Chain Coverage

Def site: Variable allocation site (static or dynamic)

Use site: Variable access (read and/or write)

Def-use chain: Path between a def and use site

Need an efficient implementation
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datAFLow

. Embed def-site IDs into objects

2. Reduce data-flow tracking to a
metadata management problem

3. Now, def-site IDs are the metadata to
retrieve at a use site

DATAFLow: Toward a Data-Flow-Guided Fuzzer

ADRIAN HERRERA, Australian National University, Australia
MATHIAS PAYER, le Polytechnique Fédérale de Lausanne, Switzerland
ANTONY L. HOSKING, Australian National University, Australia

Coverage-guided greybox fuzzers rely on control-flow coverage feedback to explore a target program and un-
x bugs. Compared to control-flow coverage, data-flow coverage offers a more fine-grained approximatic
of program behavior. Data-flow coverage captures behaviors not visible as control flow and should intuitively
discover more (or differ 5. Despite this advantage, fuzzers guided by data-flow coverage have received
relatively little attention, appearing mainly in combination with heavyweight program analyses (e.g., t
analysis, symbolic execution). Unfortunately, these more accurate analyses incur a high run-time p
impeding fuzzer throughput. Lightweight data-flow alternatives to control-flow fuzzing remain unexplored.
We pr 3 fuzzer guided by lightweight data-flow profiling. We also establish a
framework g about data-flow coverage, allowing the computational cost of exploration to be bal-
this framework, we extensively evaluate DATAFLow across different precisions,
comparing it against state-of-the-art fuzzers guided by control flow, taint analysis, and data flow.
Our results suggest that the ubiquity of control-flow-guided fuzzers is ounded. The high run-time
f data-flow-guided fuzzing (~10x higher than control-flow-guided f significantly reduces fuzzer
iteration rates, adversely affecting bug discovery and coverage expansion. Despite this, DATAFLow uncovered
bugs that state-of-the-art control-flo fuzzer y, AFL++) failed to find. This was because data-
flow coverage revealed states in the target not visible under control-flow coverage. Thus, we encourage the
community i loring lightweight data-flow profiling; specifically, to lower run-time costs and to
combine this profiling with control-flow coverage to maximize bug-finding potential.
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Can we combine
control + data flow?



So what actually
works?
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Key Findings

Speed matters

e Dumb + fast > smart + slow

Different coverage metrics find different bugs

e This occurs even when coverage of one metric is less than another

In most programs, control flow subsumes data flow



Key Questions

e \What other ways can we approximate a program’s state space?

e (Can we perform an initial (static?) analysis of the target to guide what
coverage metric to use?

e Ensemble techniques?
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Predictive Context Sensitivity datAFLow DDFuzz

e Incorporate data dependency graph
(DDG) in coverage

Can’t clone everything 1. Embed def-site IDs into objects

e Use static analysis to inform
context-sensitivity

e Favor call sites that see a higher
diversity of for incoming data flow in
function arguments

e Use points-to analysis to determine
diversity

2. Reduce data-flow tracking to a
metadata management problem e DDG represents data dependencies

between instructions

3. Now, def-site IDs are the metadata to

TR G @ IR e e XOR into edge coverage

Key Findings Key Questions

What other ways can we approximate a program’s state space?
Speed matters ° Y pp prog p

e Dumb + fast > smart + slow
e Can we perform an initial (static?) analysis of the target to guide what
coverage metric to use?
Different coverage metrics find different bugs

e This occurs even when coverage of one metric is less than another
e Ensemble techniques?

In most programs, control flow subsumes data flow




